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CHAPTER 1
INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

Thxs document constitutes the anl Techmcal Report for contract F49620-90-C-0016
» . All work performed by Atlantic

AemspaceE!ecuommCorpomuonundermeFmalyearoftMsconmmmpomdhmm

The outline of this report is as follows. The remainder of this chapter contains short
summaries of the work items. Chapter 2 reviews theoretical developments, Chapter 3 discusses
the software tasks and Chapter details the applications areas investigated. There are three of
these: (4.1) application of morphology to specific emitter analysis; (4.2) use of Gabor transforms
in automatic target recognition and (4.3) minimum dimension Gabor representations.

1.2 SUMMARY

1.2.1 Theoreticai Deveiopments

Discussion of theory is presented in two parts: analytical resuits; and algorithms.
1.2.1.1 Theory

Theory topics investigated include a Gabor sampling theorem, further studies on accuracy and
stability of the representation and relations between matrix method stability and signal duration.

1.2.1.1.1 Gabor Sampiing Theorem

In section 2.1.1 we show a sampling theorem applicable to Gabor expansions of bandlimited
functions, derived rather directly by Shannon's technique. The theorem illuminates reiationships
that exist between the number of degrees of freedom in the signal and window functions and the
minimum number of Gabor coefficients that must be retained to have a faithful expansion.

1.2.1.1.2 Accuracy and Stability

In section 2.1.2 we report on the stabilization of the Gabor transform under situations where a
window choice desirable from an application point of view leads to a near singular mapping.
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Methods applicable to both versions of the transform used in GSPS (Zak and matrix) are
presented. In addition. some thought has been given to the use of discrete representations in
which the window function has a zero in its Zak transform, this being one of the singular
situation for which the techniques mentioned above were devised. The philosophy of such
methods is to live with the zero rather than modify it. One technique is to represent the signal as
a projection into the space of all signals having Zak zeroes where the window function has them,
and minimizing the energy loss by through relative positioning of the signal and grid. The error
involved in neglecting—in Zak space——a coordinate for which the Zak transform of the window
is very small or zero is considered. and the minimization of this error over shifts of the signal and
window is shown to lead to smailer than errurs than one might initially expect. A specific
example—white gaussian noise input—is carried through the analysis. Further improvement is
possible when the input is cyciostationary.

We also indicate how a slightly modified basis, one that eliminates a number of the Gabor
translates from the basis—as many as there are Zak zeroes in the window—and repiaces them
with other functions, provides a stable basis that retains most of the Gabor features.

1.2.1.1.3 Relations between Matrix Stability and Signai Duration

In section 2.1.3, stability of the matrix method of Gabor transform calculation js studied by
looking at the algorithm that produces a biorthogonal function from its window, or vice versa.
Our preliminary resuits help explain the mechanisms controiling the blowup of the transform
method for certain window selections.

1.2.1.2 Algorithms
1.2.1.2.1 Oversampiing with the Gabor Transform

One new important aigorithbm has been impiemented in GSPS this year, which is the
oversampled Gabor representation. or the Weyl-Heisenberg expansion. In this theory the number
of expansion coefficients exceeds the number of data samples, which leads to some interesting
tradeoffs. For the higher computation required to obtain the coefficients, one gets finer time-
frequency resolution—as in ciassicai Gabor, one can partition this between domains at will: As
could be expected. this induces a non uniqueness in the transform, which one car view in one of
two equivaient ways: (1) the coefficients associated with a fixed function are not unique. or (2)
the relationship between window and biorthogonal is no longer uniqueiy invertable.

!
"
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122 Software Development
1.2.2.1 Second Year Effort

The accomplishments of the second year effort, during which the bulk of the GSPS was
developed, are reviewed prior to discussing the third year amendments.

1222 Third Year Effort

Among the principal upgrades of the GSPS during year three are: a map view of the
coefficients; ability to turn grid lines off or on at will; improvement of the command line
interface; and availability of intermediate resuits in the transforms. In accomplishing the latter.
the transforms were spiit so that, for example, the computation can be haited after the caiculanon
of the Zak transform without continuing through the Gabor coefficient caiculation.Also, a list of
warnings is provided about features of the code for which undebugged traps have been observed.

1.2.2.3 User's Guide

New files and routines are listed, and as an example, the procedure for adding a new signal type
is explained. Because of the split-up of the transform calculations, a new program flow is in
operation, and this is discussed in detail.

123 Applications Research
1.23.1 Fauit Identification in Feedback Control Circuitry

In work performed during the first two years of the contract, AAEC investigated the ability to
locate faults in feedback control circuitry using data sets provided by a DOD customer. In this
last year the emphasis was on the test of morphological filter methods for this problem, under
funds added to the contract through a MIPR. A significant issue in the evaluation of the methods
was the questionabie “ground truth* supplied with the data. Near the end of the work a revision
of the ground truth in the data was made using a neural net classifier, and subsequeat evaluations
were made against this standard. Classification using the methods described in the text generally
succeeded in achieving a high correct classification probability.

An extension of the Gabor methods used on this problem in year 2 was attempted, but the
“ground truth” problems associated with the data preciuded any meaningful effort, since the
revised ground truth was not available in time for the needed analysis.
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123.2 Automatic Target Recognition

An infrared search and track (IRST) system is able to detect targets while they are sull
unresoived by the receive optics. Each sufficiently strong target generates a response equai to
the point spread function (spatial impuise response) of the optics. The premise that automatic
detection and recognition (ATR) of such targets in a background of, for examplie. clouds could be
enhanced by Gabor-based signal processing was tested under contract.

AAEC emploved some actual cioud background data upon which was superimposed both
uniformly and nonuniformly distributed targets representing point spread functions of either a
long wave or medium wave IR sensor. Single scan lines were extracted and subjected to Gabor
processing characterized by: (1) a window function modeied after the target impulse response.
and (2) expansion that emphasized time (or spatial) resolution at the expense of frequency
resolution.

The experimental results showed two main features. The first is that if one performs not a
single Gabor analysis, but instead several in which the registration of signal and window are
changed at each instance, the targets essentially all show up in one of the cuts. In some other
cases in which preprocessing was applied to the signals, the targets were made visibie in a singie
cut, but spread across the frequency bins.

The results of this investigation are of course preliminary and incompiete, but they do
suggest promise for the Gabor transform as a tool in this class of ATR problems. Applications
involving resolved targets were not tested.

1.23.3 Minimum Dimension Gabor

Under a prior Phase I and II SBIR for ARPA, AAEC has performed the theoreticai and initial
computational exercises in minimization of the dimension of a representation of a signal set. The
efforts carried out under this contact further generalize this by incorporating minimization under
linear and noniinear constraints on the biorthogonal function. The results of the exercise show
this process to be tricky, requiring greater effort than was able to be applied here. The
computational procedures in doing this have by now been pretty well wrung out, but there
remain fundamental questions associated with the best types of constraints to use. Also, the
ability 1o work with the Zak method, which we believe to be the more stable of those available.

has vet to be implemented.
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CHAPTER 2
THEORETICAL DEVELOPMENTS

21 THEORY

2.1.1 Gabor Sampling Theorem

During the reporting period we have looked at the application of sampling theorems within the
realm of Gabor analysis. This activity has led to a Gabor sampling theorem that casts light on
the reiationship between degrees of freedom in the Gabor window and the represented signal.
We begin with a naive imitation of the original Shannon-Koteinikov theorem derivation and
encounter some interesting resuits that differ from the ciassical theory due to the supervening
circumstance that there are two functions of the independent variable (taken to be time bere)
subjected to sampiling. This imposes some stipulations not present in the earlier theory.

To begin, we address the use of Shannon-Koteinikov sampling expansions for functions
expressed in a Gabor representation. In general, a function represeated as

S()= Y Gy nWma(t), (2.1.1)
m.a

where the {w,,,_,,(t)} comprise a Gabor basis for some T > 0,

W n(t) = w(t—nT)exp(j2mme/ T), (2.1.2)

does not admit of a sampling theorem because it is not necessarily bandlimited. Even if the
window function w is itseif bandlimited, (2.1.1) can have arbitrarily high frequency content if the
Gabor coefficients do not vanish as m increases. But with a bandlimi* * ~indow and Gabor
coefficients that are zero beyond a maximum frequency, any linear combination of basis
functions will be bandlimited, hence subject to a sampiing theorem. We develop such a theorem
and use it, along with assumptions of time limitation, to investigate reiationships among the
time-bandwidth products of the signal and window and the number of nonzero time and
frequency coefficients in the expansion.
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2.1.1.1. The Sampling Theorem

Let w(f) be a function bandlimited to |f] < B,,, where f is cyclic frequency, such that the set of
translates (2.1.2) is a basis for L%(R). We denote the set of such bandlimited functions as BB, }

and say that we B{B,}. Correspondingly, the transiate wy, , € B{B, +m/T}Vne Z. For
an expression of the form

M2 -
= Y Y paWmald) (2.1.3)

mw—if/2nmaes
we clearly bave that {wy, ,} €B{B, + M /2T}Vne Z, m < M/2, and. by Shannon-Koteinikov
[SHAN],

W, (D= 3 WM(?Z;) s‘“‘{z"g°(' ?53)]

k= —an

=3 ol Tg—-nr}xp(jzm/za,,r) smc{zza,(:-z-k)]. (2.1.4)

ks \

where B, =B, +M /2T and we use sinc(*) to denote sin (*)/(*). To use a common set of

samples of w for each value of 7 in (2.1.4), we should set T equal to a muitipie of 1/2B,,. i.e.,
T=L,/2B,. Now (2.1.4) reads

W)= 3 o q,—"-’n)gp(jzm/z.o smc{Z:tB ‘- 230 ] (2.1.5)

km—es

F

Inserting the sampling theorem expansion for w into (2.1.2) yields

MI2 o e -
s= Y D Gma O k:;:n}xp(jzmku,)smc[zzs,(x-zg )J (2.1.6)

mm=M/2 pm—ce ka—ee o

Trivially s € 8{B,}, and it has the sampling expansion

sm-k“_ -—\sm:{ ( %)] (2.1.7)

9
i
~
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where

()= T 3 onn{i7pn fomliamme: 1) 218

oA ] ] gus—es

2112 Time-Bandwidth Products

No restriction on the time index n of the Gabor coefficients was needed to get the sampling
theorem. But now let us apply the restriction {nj < N /2 and consider only those expansion using

a finite number of coefficients:
M2 N2
O ETED YD Y- R () § (2.1.9)
mu—d/2nm=N/2

Further suppose that w is essentially time-limited, i.e., the sampies of w are zero for {f|2 T, /2.
We can associate with w a time-bandwidth product (or number of degrees of freedom)

D, =2B,T,,. (2.1.10)

that represents the mininmum number of sampies of required to represent w faithfully throagh
the sampling theorem. The same can be done for s, and it is easy to show that

D, =2B,T, =(T,, + NTY2B, +M /T). (2.1.11)

Because both L, (= 2B,7) and M are integers, and L, =2B,T + M, the quantity 2B,,T is also an
integer, which we denote as L, the length of the Gabor time ceil in units of Nyquist sampies of s.
Then

D, =(1+M/L)2B,T, +NL). (2.1.12)

Assume the window function and the coefficient bounds M and N are given, and that only
the grid shape (L) may be varied. To varying L is to change the subspace of L2 (R) spanned by
the basis of the truncated representation. Although we would like our basis to accommodate as
many degrees of freedom as possible, it is not particularly desirable to have that number depend

2-3
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on the grid shape. A value of time-bandwidth product that is achievable for any grid choice
would be a conservative guide to assessing the capability of the truncated representation.
Minimizing the value of D, with respect to L, however, determines a value of signal time-
bandwidth product that is achievable independent of the choice of grid. Signals whose tme-
bandwidth products are less than this minimum will be called ypiformly representable with
respect to the window and the coefficient limits {w, M, N}. D; has a unique minimum at L = r,

D/, _,. =[vZBuTw +VMN| 2.1.13)

L= 1/-11:,-’-219..1‘, . (2.1.14)

when L' 21. We interpret (2.1.14) to say that a signal is uniformly representable by the basis
{w, M, N} if its time-bandwidth product satisfies

J2B.T, <\[2B,T, +VMN. (2.1.15)

If (2.1.15) does not hoid for some s, then either the time extent of the signal will exceed the
span of the time translates of w or eise s will have frequency content that is not captured by the
frequency transiates, at least for some choices of T (or L). One of the following inequalities will
be violated for some choices of grid:

B,>B,+M/2T
T,>T,+NT (2.1.16)

Although no theorem guarantees that a signal uniformly representable with respect to a truncated
basis {w, M, N} will automaticaily have a ‘nice’ representation in the sense of some error

measure, for example

8=R;(t)— zam.w,,,,,(:)“ . ' (2.1.17
2

mua

the time-bandwidth product guidelines shouid provide insight into the match between a signal
and its expansion over a truncated basis. Theorems relating to this will be sought in future work.

2-4
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We close by observing that (2.1.15) can be soived in the following two interesting forms: the
first states a requirement on the window time-bandwidth product, given the signal and the
number of coefficients; the second tells how many coefficients must be retained to expand a
given function with a particular window:

J2B,T,, 2\2B,T, -VMN
VMN 2\2B,T, -[2B,T,, . (2.1.18)

2.12 Accuracy and Stabilty of the Expansion

Accuracy and stability of the Gabor representation are longstanding issues. Over the course of
work on the three-year contract, AAEC has made considerable progress the in understanding of
these matters, most of which has been discovered piece by piece and not documented in prior

reports.

Two distinct approaches are reported here. In the first type, a “bad™ window is tamed by
adjustments to either the window or the point grid. Finding a transformation close to the
original, but with much better conditioning, is the goal of this approach. In a second method, we
examine the implications of working with window functions that lead to noninvertibie transforms
and assessing the associate loss of representation fidelity. The latter work is in its early stages
and is not yet supported by numerical experiments, whereas the former category has been weil
explored numerically by AAEC.

2.1.2.1 Stabilization by Window or Grid Adjustment

In (BALA], presented at the 1992 [EEE-SP International Symposium on Time-Frequency and
Time-Scale Analysis, we have coilected descriptions of a number of the techniques we have
successfully employed in stabilizing ill-conditioned Gabor expansions and presented them by
computed exampie. Methods applying to both the Zak and matrix methods are included. The
following summarizes the content of this paper, which is found in full in Appendix B.

The paper begins by summarizing the Zak and matrix algorithms used in AAEC’s GSPS
software, highlighting the features of the window function that in each case can lead to
singularity of the ransform. Section 2 addresses experiments performed with the Zak aigorithm,
where we present a condition number expression for the mapping. Explosion of this number
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results from zeros of the Zak transform of the window function lying on or near the computation
grid. Using a window of the form

w(t) = te"*u(1), S (2.1.19)

which has a single zero at a point whose time coordinate is adjustable by choice of a, we explore
three techniques for ameliorating the Zak zero problem: (1) subtie change of the window
waveform to displace the Zak zero; (2) time- or frequency-transiation of the window; and (3)
alteration of the time-frequency grid. Exampies of an ill-conditioned transform before and after
each of these methods are shown, and in each case considerable stability is recovered.

Section 3 deals with a similar treatment of the matrix method. The failure mechanism in
this case is the occurrence of zeros of the window function itseif within the interval from the
zero-th to the first ime grid point. The window in (2.1.19), having a zero at the time origin,
makes its matrix transform noninvertible. Left shifting the window by just one point is enough
to stabilize the transform. A second method invoives adding a small constant vaiue to the
window at every point. Numerical resuits of both techniques are presented.

2.1.2.2 Working with Transforms Having Zak Zeros

The following thoughts were stimulated by reading (TOLI], in which it is remarked that
aithough one approach to deal with a window having a Zak zero is to use it only for expansion of
functions that have a corresponding Zak zero, this solution may be overly restrictive. The
reference contains no evaluation of the degree of restriction imposed by this approach, and it
seemed of interest to consider this aspect further.

Assume a discrete Gabor expansion using a window having exactly one Zak zero on the
. grid, e.g., the gaussian, for which

2,,(}4.%)=0 (2.1.20)

In a discrete time expansion there is just one bad point for the transform as executed by the Zak
method. which is the point where the “divide by zero” occurs. Consider the set of all functions f

ih £2 such that

Ze()A.)5)=0. (2.1.21)

[
!
(=)
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This set is a subspace of ¢, since if f and g have the zero property, af + bg has it also. We
would like to consider what it means to take an arbitrary f and make some “minimal”
modification to it such that the resuiting f belongs to the subspace Z.)(%.4)=0.

The indicated procedure is of course a projection operator, and thus there is a least squares
solution to the estimation. That s, find 7 such that: i) Z,;,()4,)=0, and (D) P-A i
minimized. I-‘indingfcouldbewcompﬁ:hedbyadassicalleastsqwupmcedum.bunbemis

a better way. One shouid compute the Zak transform of f, zero the appropriate coordinate, and
retransform to get f.

Let h represent the error induced by the projection,
f=f+h, (2.1.22)

and use |4} as the error metric. Let the Gabor expansions under consideration have an N x M
time X frequency grid size; then there are M N points in any associated function (the data,
window, Gabor coefficients and the Zak transforms). In all the following we assume the
gaussian case with its zero at the center of the unit square. It is easy to see that

0 {2, 04101 (et @i
and that
W% +r)= ﬁ-g&h)(%»%,)exp(—ﬂm /I N) (2.1.24)
0; qeM/2
={(;;,2:Zm(%'yz)= g=MI2 (2.1.25)
One then m;dﬂy finds that
W =iz 5 . (2126

We can use A /mzas a measure of energy loss in the projection, and estimate its
approximate value by noting that the loss is one out of MN coordinates: since the Zak transform
is unitary, we can anticipate an energy loss on the order of 1/MN.
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Consider further that there are A unique alignments of f with the time grid in regard to Zak
transformation, and there is no reason to imagine an a priori preference for any one of them.
Define the set of time transiates of f as {f“'"}, Os:nsM-l.whu'eweidmtifyfwithf‘m.and

F™ is its m-th transiate. Then in amempting to minimize the projection error, we are free to
inspect all M translates of f and choose the one such that lz(f‘")(%’%)ris least. The error

associated with each translate is
2
oz (S
£ = 2 59 . (2.127
3 (2, ooy s %)
p.q
and the minimum is
&= min . (2.1.28)
0sSmsSM-i

We would like to estimate the savings in choosing to discard the smailest possible amount
of energy. To do so requires some assumption about the signal being represented; let us take as
an example a signal f consisting of statistically independent, reai-valued, zero mean, unit
variance gaussian noise variables. For any fit is true that

N-i

Z,(%. )= (=D flk+ 1), (2.1.29)
k=0

and therefore the new gaussian variable in (2.1.29) satisfies

Z;(%.)5)=0 (2.1.30)
and
P — N = | cec— .
2,44 =3 |fte+ B =w. (2.1.31)
k=Q

We would like to compare this average energy in the Zak transform of f to the expected
energy in the Corresponding Zak of signal f,,;,, for which the energy loss is minimum. We can

do this through the following theorem.

S ]
¢
oo
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- N
lzf(‘) (%'4 57‘7. (2-1.32)

This theorem tells us that there is an expected savings proportional to the square root of the
available number of shifts of the signal reiative to the grid.

Proof: Let
s_zzﬂ..(}g,}g); 0SmsM-1 (2.1.33)

and define
- S=min{ls, |} (2.1.34)
We want to find the probability density of S and compute its second moment.
Clearty
Pr{s2 X} = Pef(ll> X)n (51> )+ s> D} =[peflsl> 2

But |
| X
Pr{(i5ol> X)} = Pr{(So > X)u (S <-X)} = 2Q(71-V') (2.1.36)
where Q(¢) is the normal probability tail ﬁmgxan
o(x) = Idu plu) n-:/;—z].duexp(—uz 12), (2.1.37)

P 4
and p(e) is the gaussian density. We observe that

%Q(x) = -p(x). (2.1.38)

The probability distribution (integral of the density) of s is then given by
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Pr{(S < X)} = 1-[20(7’%)]‘. (2.1.39)
and its deasity is found by differentiation: h
-1

a0 =2-Prfis< X)}-% ’(7%120(7{:7)] x20. (2.1.40)

.6:7 = ldu xzq(x) = %%Idx x? p(v%IZQ(:J%)]“-l
0 .

azwv]'dv v (w20 (2.1.41)
0

We see that (2.1.41) yields a value of N for the case M = 1, which checks with (2.1.31).
Although we cannot analyticaily carry out the integration in (2.1.41) to get a closed form exact
value, we can get a tight upper bound by using the familiar inequality

Q(v) S sexp(—v* /2); v20 (2.1.42)

as follows:

P ) M-t [ v 2
S .zmng p(v)[zc(y)] SZMN‘([‘mv.exp(-Mv 12)

2 N
—— / . , . .
s ¥ exp(~y 2)=VM QE..D (2.1.43)

Our interpretation of this resuit is as follows. If we arbitrarily position our signal with
respecttomegnd.wecanexpeamlosememrgyofoneofourMNcoordmm If we replace
the numerator and denominator in (2.1.27) with their expected values, we find
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lzu"')(%';a

1
- B e (2.1.44)
MN
2'2(,.‘.,)(’/”’4/”42 - -
P4
Choosing the signal placement wisely lets us achieve
1 (1
%~ 77w ) 2149

i.e., the expected fraction of energy loss is smailer than the fraction of coordinates discarded.
Thus from an energy viewpoint, representation by a discrete Gabor transform using a window
having a singie zero may be quite tolerable!

There is another perspective to put on this sequence of observations. We have seiected for
our signal a stationary process, and have applied to it a time-frequency transform. Conventional
wisdom teils us the utility of time-frequency techniques is that they capture nonstationary
behavior. In one sense then, we might not expect any benefit from the analysis, and one couid
argue such a case, saying “our window selection was so inept that the basis functions were
incompiete and we lost some signal; only by a clever trick did we minimize that loss.”

In support of this argument, notice that the expected energy loss increases as N increases,
i.e., as the time resolution of the transform increases. This may be considered to be the penaity
associated with going from Fourier-type representations, which have no time resoiution, to a
mixed domain picture when the phenomenon under study is stationary. Now suppose we give
our signal a second-order statisticai cyclostationarity by assuming the variance to be a periodic
function with a period such that several cycies are captured within the MN data points. In the
period is in fact M, we would anticipate that a Gabor representation using M frequency points
and N = MN / M time points to be well maiched to the signal. If the variance had a pattern such
as that shown in Fig. 2.1-1, one can see that by picking the grid such that the time coordinate of
the zero of the window matches the minimum variance point, one would in fact expect to lose
little and do better, on the average, than the 1/+/M improvement found for the stationary case.
Here we are exploiting the time-varying behavior of the Gabor series to match the problem, and
are finding some good rewards.
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Fig. 2.1-1. Graph of the periodic variance of 0.

Observing ail that has been done above, one can conclude that it is not actually necessary to
sacrifice any of the signal energy, if we will liberalize our representation slightly. The space into
which we have projected the signal has an orthogonal compiement spanned by, in this case, a
single basis function. If we add this function to the (M N - 1) others generated by the
time/frequency transiates of the Gabor window, we recover a compiete basis. It differs from a
strict Gabor basis in that one member fails to exhibit the translation property. This gives us
another way to see the penaity for using the window with a Zak zero; it causes us 1o abandon part
of the nice structure we valued in going to the Gabor series in the first place. However, the

deviation can be considered minimal. In fact, the added basis function depends only on one of
each M points in the data; this function is just g=h/Z.()4,)5), where A is given by (2.1.22);

0. gqg=M/2 »
- - r
g=1( ,\l,) =M (2.1.46)

Observe g is zero except for one point in M.

The above viewpoint says that we need not abandon a window function that resembies our
data quite weil simply because of its Zak zeros. The options are to remain within the strict Gabor
structure and sacrifice a smail amount of signal energy, or to eniarge the representation and
capture everything. One of these approaches may weil suit a wide variety of probiems.
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2.1.3 Relations between Matrix Stability and Signal Duration

The Matrix Gabor representation as described in [BALA2] has some stability problems
associated with it that are mentioned in the original paper, such as noninvertibility of the window
if it posesses an analytical (or computational) zero in the first Gabor time slice, as well as other
problems that are mentioned in the previous section and were investigated in [BALA1}, a copy of
which is included in Appendix A. We will now describe some preliminary resuits which lead us
to befieve that one may have some control over the stability of the method by controling the
signal length or the aumber of Gabor time points, depending on the nature of the signal that is to
be analyzed. For windows whose values in the first Gabor ume slice are not zero, but have a big
dynamic range and with the smallest value being much less than one, the method is also unstable
as can be seen from the following. Let the linear system to be soived be defined as

(WE)x=b (2.1.47)

where W is the MN x MN (block ) matrix containing the window values, E is the MN x MN.
(diagonal) Fourier rotation matrix, x is the MN X 1 vector of (ordered) unknown coefficients, and
b is the MN x 1 vector of signal data points, M is the number of Gabor frequency points and N is
the number of Gabor time points. We can now write the vector x of coefficients as

x=E"'Bb , B=W" (2.1.48)

Let us now write W and B in their block form in order to see their representation more clearly
and to see how B will depend on the structure of W. Note that because of the ordering each of
the blocks of B and W will be M X M, and there will be N x N of them in each matrix (for a full

derivation see (BALAZ2)).

3 W,
Wl Wo
W, W, W
w= ' 0 : " (2.1.49)
N=2 Wz u’l Wo
_Wn-a WN—2 W. WI Wo J
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By
B, By
B 82 81 Bo (2.1.50)
By, B, B &
_BN-I By.; B, B, B d
and
By =-W;!
B, =-W5' (W, W5")
1
B, = -W3' (W, W' + W,B,) (2.1.51)

By = - W' (W3 Wg' + W,B, + W,B,)

By = -W5! (W,Wy' + Wy_,By+-+W,By_;); VIe[2N~1]

The extent of our analysis to date has been to look at the simpiest nontrivial case which
occurs when the window lasts only over the first two Gabor time siices. This being the case, the
zeroth and the first W are nonzero, and the above formuia for the biorthogonal matrix becomes

By = -Wy'

B, = ~-Wg' (W, W5)

B, = ~W;' (W, B,) = Wg' (W, Wg')?
By = -W5'(W,B,) = ~Wy' (W, Wg')’

(2.1.52)

B, =~W3!(W,B,_,) = (=)' W' (W, W5} VieN-1]

from which we notice two important things. The first is that even though the window only has
support over two time slices. the biorthogonal has support over all the time slices, therefore, the
biorthogonal matrix will be full. More apropos to this discussion, we notice that each successive
block of the biorthogonal grows by a power of the inverse of the window entries in the zeroth
time slice muitipiied by the corresponding window entries in the first time slice. This is due to
the diagonai nawre of each of the blocks of W and B. This implies that the stability of the
method depends on containing that growth rate to reasonable bounds.
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The above discussion iumpiies that one now has two possible ways of controling the stability
of the method depending on the namre of the signal. If the signal of interest is such that it can
tolerate being split up into pieces, then one can choose the desired number of frequencies M and
then make the length of the signal be such that the aumber of time points N keeps the power

B, =(=D)"'W (W, W ", (2.1.53)

well behaved and bounded. One can then apply the transform to each of the pieces separately. If
on the other hand, the signal in question does not tolerate being spilit up, but we have some
freedom in choosing the number of frequency points, ie, the window is nonzero over the
increased length of the Gabor time slice, then one can increase the number of frequency points
thereby decreasing the number of time points (for a fixed signal length) and keeping the above
expression well behaved.

The computation of the biorthogonal matrix entries gets more involved as the number of
Gabor time points that support the window increases, and this analysis has not yet been
performed for the general case. When the analysis is complete, we will submit a paper for
publication on the obtained resuits. As a closing note we remark that in GSPS, all the
aforementioned analysis can be done a-priori for windows of all lengths of interest, and the
information will be readily available when the signal is chosen, since the analysis is compietely
independent of the signal.

22 ALGORITHMS
2.2.1 Oversampling with the Gabor Transform

In order to increase the capability of the GSPS workstation to allow us to analyze different
types of signails, we decided to include the capability to perform oversampling. A brief
description of the algorithm is giiren here, and for a full detailed expianation the reader is
referred to (WEXL]. The formuiation of the oversampling algorithm is as follows: Let P be the
total number of points in the signal data set, M and N be the number of desired frequency and
time points respectively, and M’ and N’ be two auxiliary positive integers satisfying the constraint
that .

P=MN'+M'N 22.1)

Under these conditions, the Gabor transform can be written as
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MeiN=}t

stky= 3 > a, h(k—mN"exp(2iznk / N) (222)
b’
) ., = g:(k)l;'(k ~ mN")exp(2imnk / N) - (22.3)
together with the condition that
gh'(kﬂml; (k)exp(2imnk / N')=(P/ MN)é,0, . (2.2.4)

At this stage, the last condition can be rewritten in matrix form. in order to soive for the
biorthogonal function b in a similar way as the matrix formulation of the Gabor transform. The
M’ x M block matrix of window values, each square block being N’ X N', can be written as

(WE)b=r (2.2.5)
with
[ 0 Wy Wur W(u-zw W(u-mr ]
W,,. W,‘,. Wnnur o Ww«n—zw W.rﬂu-mr
W= W, Wosronr Woesar = Warvu-aw Wosews-ne | (2.2.6)
_W(N-mr Win-oaesw  Wineweaw - Wivcowess-ow - Wonenaesu-on J
with each W given by
-h, -
s,
hl+2 ’ ”
W‘ = .. ] (2“"7)
hmn'-n
L P -1y )

for a grand total of M’ N' X P entries, premultiplied by the M’ x*M’. block matrix Eq of Fourier
rotations of size N’ given by
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E,
E,
" E= ol (22.8)

E,

E, |

and the P X | unknown biorthogonal and the M’ N° x 1 right hand side vectors b and r are
respectively,

b=[K0) b(1) 62  HP-2) HP-DJ

, (2.2.9)
r=(P/MN 0 0 - 0 0]

The biorthogonal vector can be now caiculated after choosing a way to 'invert' the non-square
matrix associated with the window function. We chose to impiement a generalized inverse or
energy minimization method in the GSPS workstation with some slight computational
modifications from the referenced paper. We noticed that since the inverse is given by

b= (EW) (EWXEW) )"'r
= W/ (WWT) ¢ , (22.10)

t=E"'r

the last computation can be performed by hand and it resuits in a reasonable computational
savings. The new right hand side vector becomes

r={r, 0 0 - 0 of

- (22.11)
r,=[P/MN P/MN P/MN --- P/MN]

with each one of the biocks being of size N' x 1 . The biorthogonal is, at this stage, fully
available and the Gabor coefficient map can be computed with the aid of (2.2.3). Reconstruction
of the signal (with or without postprocessing) can now be also caiculated with the aid of (2.2.2).
A better description on how to perform these operations within GSPS and a description of which
parameters can be chosen by the user will be described in Section 3.3.
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CHAPTER 3
SOFTWARE DEVELOPMENT

3.1 SUMMARY OF SECOND YEAR EFFORT

Before discussing the software effort expanded this third and last year of the contract, we
will briefly summarize the work that was performed during the second year under contract.

3.1.1 Phase II Code

During the second year of effort, numerous additions and enhancements were incorporated
into the Gabor Signal Processing System software, which from here on we will caill GSPS.
Before moving on to summarize the Phase II code, we will begin by describing the philosophical
change that took place towards the end of the first year of the contract. As described in the First
Annual Technical Report, the initial Gabor transform software prototype was impiemented on an
IBM compatible PC and it was command line driven, ie, the user was prompted to enter a
number corresponding to a signal, window, etc., the Gabor processing was performed, and the
resuits were then written to files. Unfortunately, in order to change parameters, one had to either
restart the code or hardwire different values into the program (such as total number of points) and
recompile. The cumbersomeness of doing this, together with memory limitations and speed
considerations, forced us to migrate to a different (better) platform and to create a user friendly
graphical user interface that couid accomodate all the power and flexibility that we wanted to
incorporate into the GSPS. Bearing that in mind, at the beginning of year two we seiected a
SUN Microsystems SPARCStation1+® as the computational plaform, C as the scientific
programming language, and X11 together with the XView toolkit as the graphical user interface
programming language t0 be used to develop the GSPS software that is currently available, and
which we have been using 'in house’ for a period of well over one year.

3.1.1.1 Functionality

The organization of the program has become more clear to the user by the development of a
graphical user interface that is layed out in such a way that the user can follow a sequence of
major categories, represented on the screen as burttons. and progresively move down the logical
sequence to the desired function to be applied. This is accomplished in the following manner:
the major categories represented by buttons are:
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Signais
Windows
Noise
Method
Clipping
Reconstruction
Iterate
Utility
Coefficients
Options
Output

Exit GSPS ?

Each of the burttons is the owner of 2 menu which contains menu items, which in turn may
contain (nested) submenus. The last entry of a path through a menu is either a command which is
executed immediately or. when appropriate, a command which contains a dialog box in which
the user can either enter, change, or choose selected defauit parameters. These parameters are
then updated in the main program and the command is executed. If the action that is selected by
the user resuits in a graphical representation of data, a window is automatically opened and the
data is dispilayed. Since the real estate on a computer screen is limited, all of the windows that
are opened by GSPS are muitifunctional, ie, the same graphical window that is used to display
the analysis window is used to dispiay the function that is biorthogonal to said analysis window.

Keeping that in mind. we can now illustrate the high level execution of the program by
means of an exampie, while a more detailed exampie including the features incorporated in the
third year will be inciuded in the User Manual (Section 3.3). The user starts execution of GSPS
by opening their favorite X11-based window manager on the screen. and typing gsps from one
of the text /O windows, or alternatively, opening a file manager and double ciicking on the gsps
application. This resuits in the display of a Control panel containing the ( deactivated except for
Exit GSPS) buttons, and a Disclaimer panel containing the proprietary information. disciaimer.
software version, and two buttons marked "Continue” and "Quit". Selecting the Quit burton exits
GSPS with no action being taken, while seiecting the Continue button erases the Disclaimer
panel and activates the buttons in the Control panel. We are now ready to start processing
signals. Selecting the "Signals” button with the Right Mouse Button ( RMB )dispiays a menu
containing different signai choices right under the Signal button. Selection of a signal choice
with the Lett Mouse Button (LMB) opens up a diaiog box which allows the user to either choose
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default values for the signal by selecting the "Defauits” button in the dialog box, or enter the user
defineable parameters manuaily. The action can now be either aborted by selecting the "Cancel”
burton. or accepted by seiecting the "Ok" button. Accepting the choice resuits in the appearance
of a display window which contains the selected signal. One can now proceed to the selection of
the anaiysis window by selecting the "Window" button with the RMB. This resuits in the dispiay
of a menu that is functionally identical to the "Signais” menu and., in fact, contains the same
entries. Selecting the "Ok” button from the Dialog box resuits in the appearance of a second
dispiay window that contains the graphical representation of the analysis window. Once the
signal and window have been chosen, the user can proceed to the choice of the method that will
be used to do the processing by chosing a2 method from the menu associated with the "Method"
button. This can be accomplished by selecting the "Method" button with the RMB. and choosing
a method with the LMB resuits in a third display window being open. and it contains the
appropriate coefficients corresponding to the selected method. It is noteworthy to mention that
the Coefficients window automatically displays both 2-D and 3-D coefficient sets depending on
the representation that is warranted by the given method. At this stage the user can choose to
repeat the portion of the experiment described so far by choosing different signals. windows,
methods, or any combination of the above, or proceed to the reconstruction of the signal. If one
opts for the reconstruction route, there is an option to first perform simple threshoiding on the
coefficient set by selecting the "Clipping" button with the RMB, entering the desired
threshoiding leveis, and removing the coefficients below, above, or between user defined upper
and lower bounds. If it turns out that it is not desireabie to perform any threshoiding, one can go
directly to one of the reconstruction routines which behave anaiogousiy to the method options in
the "Method" button. The reconstructed signal is now dispinyed in the Signal window and., if the
reconstruction method is the same as the transform method, the coefficient set has not been
clipped, and the method was stable, it will be the same as the original signal except for roundoff
error. The L7 distance between the original signal and the reconstructed signal is reported next

to the origin in the Sigp:! display window
3.1.2 Capabilities

During the second year of effort, numerous additions and enhancements were made to the
tool that was available at the end of the first year, the most noteworthy of which being that the
user could change initialization parameters like signal duration and time-frequency splitting of
the grid, as well as other parameters, without having to recompile the program. In fact, the only
time that recompilation is needed is when a new feature is added to one of the menus as a menu
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item. After the addition is debugged. all the parameters that can be controlled by the user (if any)
will appear in a dialog box when the seiection is made.

Another Major improvement was the feel of the tool. The user could now input parameters
of interest in the dialog boxes, and choosing the button labeled 'Ok’ made the program accepe all
the parameters at once and continue with the execution. If the wrong parameter was input, the
user could move the pointer over to the appropriate field and change it before selection of the
'Ok’ button if the mistake was noticed in time or, in the case that it was not, the same (or a
different) menu item couid be chosen, the correct parameter input and the 'Ok’ buton seiected. In
the previous version of the software, cierical errors wouid resuit in the user having to restart the
program fro step one. The menu approach aiso allowed the user to pick up at any point on the
list of buttons which logically preceded the last step chosen, and after an initial run through the
four logically sequential steps, ie, after going through the process of choosing the signal.
window, method and reconstruction, one could reprocess from any of the intermediary steps. We
will illustrate by saying that after the user had chosen the signal, window, and method. the signali,
window or method couid be chosen again, as well as the associated utilities, without having to
either complete the sequence by choosing the reconstruction option or starting out with a new
copy of the same (or different) signal. The logical flow of the program is illustrated in Fig. 3.1-1
befow.

SIGNAL, | TEXT
AND GRID |@=—{ NOISE
DEFINITION | PREPROCESS
! MATRIX CHOICE
WINDOW jeeip BIOR'ATO METHOD Hnmvcn

|preprOCESS|  [TEXT FILES |

Fig. 3.1-1. Logical flow of the GSPS package at the end of the second year

Note that even though the user could choose a different window or method after having .
gone through the sequence of events once. the grid definition was at the signali level, therefore, if
one wanted to redefine the grid shape and size, one wouid have to go back to the signal choice
and redefine the signal in such a way that it reflected the desired configuration. We will see in
the next section that this limitation no longer exists due to the ability of the window to redefine
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grids, and the added capability to redefine grid configuration from a meau item's dialog box
under the Utility burton.

During the second year of effort we aiso included the method resuiting from the marrix
reformuiation of the transform [BALA] and numerous utilities to preprocess the signal, such as
zooming, shifting, saving to memory, etc.. We also reported various values of interest to the
appropriate window after certain actions were taken, such as the length of the maximum
coefficient and the dimension of the signal set [ORR?]. For a full description of the
enhancements introduced during the second year the reader is referred to [AAE1].

3.2 THIRD YEAR EFFORT
3.2.1 New Facilities

As reported in the previous technical report, at the end of year one it was decided to improve
our computational facilities in order to be able to process larger data sets, and to speed up the
processing time. As it turns out, the upgrade that was made to the system at that time has
resuited in more than adequate computational facilities to perform the tasks asociated with this
project and, therefore, no new facilities were needed during the third year of effort. For a full list
of facilities, the reader is referred to (AAEC] and [AAE1].

3.2.2 Phase III Code

Phase III software development has centered around broadening the applicability of GSPS
to a wider range of problems by improving its ability to interoperate with other analysis
packages. and through the addition of new diagnostic displays. In addition, we have
impiemented two new versions of the Gabor transform with slightly different capabilities than
those present in the Phase [I code. To facilitate to the addition of these features to GSPS, several
key portions of the Phase II code have been restructured for added flexibility, notably in the file
VO facilities and in the handling of signal buffers.

3.2.2.1 New Display Components
map view

A “map” mode has been added to the coefficient display to supplement the spike piot
display from Phase [I. In this mode, the coefficient matrix is displayed as a grid of rectangular

color patches whose colors correspond to the magnitude of the coefficient at that coordinate,
relative t0 the maximum coordinate magnitude. Coefficient values beiow a compiled-in epsilon
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value are suppressed. and are displayed in the background color. A color key is provided to the
lower left of the grid. Selection of the spike piot and map modes is accomplished using the
“map” button located in the control area above the color key.

grid button

A button labeled “grid” now appears in the control areas of the signal, window, and
coefficient displays. In the signal and window displays. this option controls the dispiay of the
hash marks which indicate the endpoints of the Gabor timesiices. In the coefficient dispiay, this
option works in conjunction with the map button to control the display of reference lines in the
spike plot mode, or to mark the boundaries of each color patch in the map mode.

The RMS duration and RMS bandwidth are now computed for both the signal and window,
and are displayed in the control areas of their respective windows.

A number of new signal options are availabie:

(interaction changes: new signal and window types)
Get Fourier

null signai

(interaction changes: reading data files)

getfileinfo, matiab

(interaction changes: new transforms)

matrix2, oversampling

(interaction changes: piecewise forward and reverse transforms)
the:“compute” routines

biorthogonais and windows: matrix and zak
forward and reverse zak

(interaction changes: )

(changes to utilities)

One significant departure from the Phase II code is that the buffers containing the
intermediate components of the Gabor transforms (i.c. the biorthogonal and Zak buffers) may
now be loaded from a file and explicily manipulated. This introduces a synchronization
problem as these buffers were implicitly linked to other buffers when their contents were
automatically generated. A set of global flags have been added to indicate the validity of these
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buffers, and should be checked before the corresponding buffers are to be used. Likewise, these
flags shouid be set appropriately whenever any of the buffers is modified.

323 Warnings and Suggestions
The following is a list of known caveats for potential users.
After the tool has been running for a long time, it may crash.

Since you can't ‘edit data in the ‘window’ window, any Gabor window preprocessing can be
done in the signal window, copied to memory, and then read in the window window.

The number of points in a signal or window shouid be an integer power of 2.

Although the coefficient display is cleared whenever it becomes marked as invalid, a refresh
call to that window may cause the previous contents to be redispiayed.

A number of conventions must be observed when Matlab data files are to be imported into
GSPS. Several variable names are reserved for use by GSPS [tmpM tmpN tmpRate unpType
tmpMethod Comment]. Any stored data elements which do not correspond to one of these
names will be interpreted as the data with which the buffer wiil be filled. As a resuit, you shouid
not save any other eiements in this file except for the signal itself, which may be saved with an
arbitrary name. If the file importing routine encounters an unknown element following the
signal, it will attempt to load that element’s contents instead.

GSPS was deveioped in the OpenWindows™ 2 environment, and is designed primarily for
use in a color environment. Although the application will run successfully with a monochrome
display, various text. fields will appear crowded as the monochrome XView™ 2.x libary uses a
different font entirely. GSPS will compile and run with XView 3.x libraries as well, but will
exhibit this behavior on both color and monochrome displays.

3.2.4 Scripts

Although the Phase II version of GSPS inciuded a simpie command line interface, it has
since proven inadequate to the expanded capabilities of the Phase I code. As GSPS has become
more general in its purpose. so has the need for a more generic command line interface grown.
The new interface syntax is designed to accommodate additional transforms and aiso makes

provisions for transform-specific parameters.
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83ps -3 <fname> -w <fname> -x{2imioiz] -0 <fhame>
83ps -3 <fname> -w <fname> -m <M> -n <N> -x{2Imiolz] -0 <fhame>
where: i

-§ <fname> is a path t0 the file containing the signal

-w <fname> is a path to the file containing the window

-x specifies the transform to be used:

-x2 indicates the Matrix2 method

-xm indicates the Matrix method

-xo indicates the oversampling method

-xz indicates the Zak method

-0 <fname> contains the name of the file to which the coefficients shouid be written
33 USERS GUIDE
33.1 Procedure Descriptions

The following new files and routines are present:

new files: get_four_coef.c getfileinfo.c loadmat.c null_sig.c over_gabor.c savemat.c tbprod.c
utilmat.c

new routines: graphics.c init.c loadfile.c main.c savefile.c xforms.c

In the event that a signal, window, or coefficient matrix of exceptionaily small magnitude
must be dispiayed. the plotting routines now impose a non-zero scaie value...

Exampie: how to add a new signal type

Although new signais are typically generated externally and imported through the file /O
interface, it is frequently desirable to hardcode new signal types which are to be used frequently
with minor variations. even though these signais will only be accessible from the graphical user
interface. This procedure typicaily requires four steps: coding the signal generator, coding the
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user interface components, adding calls to the main initialization and menu generation routines,
and adding build dependencies to the compilation control configuration file. For clanty, it is
generally desirable to name the source code files after the signal being generated: for instance, a
trianguiar puise generator might have the files tri_pulse.c and optionally, tri_pulse.h
associated with it. Because GSPS lacks a generic mechanism for manipulating signal generation
parameters outside of the GUI, these variables should remain opaque to the remainder of the
program and may be defined as static types local to the signal’s source module.

The signal generation routine is often adapted from another piece of standalone software, so
typically it is passed a desired number of points, a sample rate, and whether a real or compiex-
valued signal is desired, and typically it returns a buffer of the appropriate size and type. This
may then be called from a callback routine which is shared by the signal and window menu
items, which is then responsible for copying the generated signal into the correct buffer.

The GUI supporting code consists of an initialization routine which creates the GUI objects.
and a set of callback routines which those objects will dispatch as various buttons and widgets
are manipulated. The construction of these callbacks is beyond the scope of this document. but
the file txi_pulse. c is recommended as a tempiate.

Modifications shouid be made to the file main. c in four piaces. First, external references
to the routines should be added near the top of the file. Next, menu items shouid be created
under both the Signal and Window menus. Finally, a call to the initialization routine shouid be
added near the end of the file, but before the main foop is invoked.

332 Program Flow

During the third year effort, much functionality was added to the GSPS software, but the
logical flow of the program has changed very little since the end of the previous year. The main
logicai change has been due to the inclusion of a menu item called grid, info to the Utility
button. This menu item allows the user to redistribute the time and frequency points on the grid
at any time after the signal buffer has been written to at least once has been added to the utility
button. therefore, the user no longer needs to choose a new (or the same) signal to run different
grid configurations. The user still needs to generate a new signal buffer if the signal duration is
to be changed. One other change worth mentioning is that under the Utility button, a Compute
menu item has been added which allows the user to compute intermediate steps in the Gabor
transform computation, for instance. the Zak transforms and the window biorthogonal. This
means that the user no longer has to perform the full transform computation if the only thing of
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interest at any particular ime is, say, the biorthogonais to the window that resuit from a set of
grid spacings. For big signals, this can prove to be a considerable time savings

ARROWS WITH ONE END NOT CONNECTED TO A BOX
IMPLY COMMUNICATION WITH THE WORLD OQUTSIDE
OF G3PS. [E, FILES. MATLAB

Fig. 3.3-1. [lustration of program flow.
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CHAPTER 4
APPLICATIONS RESEARCH

4.1 FAULT IDENTIFICATION IN FEEDBACK CONTROL CIRCUITRY

This section describes the experiments performed to investigate the application of the Gabor
representation for solving problems of emitter identification in communications. In these
experiments, test data was used to investigate the characterization of signal features, specifically
transient signais, with the Gabor transform. These test data features were used to characterize
signals as belonging to specific classes of emitters as an exercise in determining utility of Gabor-
based methods for this problem

The probiem investigated in these experiments was the mapping of signais of interest to
transmitting and receiving equipment identity. The utility of using Gabor-based techniques was
studied and tested with a set of signal data from several transmitter-receiver pairs. Each pair was
considered to generate a class of signals. The Gabor techniques were applied to the data to
characterize each signal as a member of one of these ciasses of signais. A dimension measure of
the Gabor coefficient set, developed by AAEC under a separate DARPA contract [AAEC2), was
the main discriminant tested to separate the signais into classes.

4.1.1 Summary of Previous Work (Greenbeit Facility)
4.1.1.1 Data Sets

Two sets of signal data were used during this effort. The first database consisted of 186 files
containing approximately 65 thousand time samples each, sampied from analog signals at a 20
Khz rate. Of the 186 files, only 47 files contained signais of interest. Two types of transient
features were found in these 47 files, and 56 occurrences of these features were chosen for the
experiments. The two types of transient features were designated the smail and normal size
signals. The length of these features of interest ranged from 256 to 2048 time samples.

A second database consisted of 1944 files, containing signal data from many different
transmitter-receiver pairs. The length of these files ranged from approximately 1000 to 16500
time sampies. In this data set, a signal of interest contained about 200 time sampies.
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4.1.1.2 Experiments

The technical approach used in this investugation was to visually examine the original signal data
and look for features in the signals which appeared to be common within each class of signals.
Once these types of features were ider tified, a portion of the data containing the feamre was
extracted to be used as both a signal and as a Gabor window functon. Data-derived window
functions were then applied to the other signais using the Gabor transform. The resultant
dimension of the set of Gabor coefficients was minimized through a time alignment procedure,
and this minimum dimension was used to discriminate between classes. Additional
discriminants were used as appropriate. These inciuded the maximum amplitude of the Gabor
coefficients, and the reconstruction error due tc “clipping” of the Gabor coefficients, which is
defined as deletion of all coefficients of magnitude smaller than a percent of the largest
magnitude coefficient. These additional measures improved the classification process.

Three types of experiments were performed: 1) Normal vs small signai characterization, 2)
Small signal discrimination, and 3) Signal ciassification with averaged windows. Since signais
of interest in the data come in two classes, the first task was the discrimination between these,
addressed by the first experiment. Given success at this first stage, discrimination within a class
was the remaining key factor. Experiments 2 and 3 were devoted to discrimination among smail
signals. Discrimination among the normal size signals was not emphasized.

4.1.1.3 Resuits and Observations

Even though only a finite number of test signals and six window functions were used to analyze
and characterize the signais of interest, use of the minimum Gabor dimension value and the
maximum Gabor amplitude showed promising resuits. The use of averaged windows was found
to be a useful additional method of discrimination. For a compiete description of these
expeﬁmems, refer to the Second Annual Technical Report (AAEC2).

4.1.2 Summary of Previous Work (Waitham Facility)

During the previous year, a MIPR subprogram was conducted under the Gabor program to
address the probiem of identifying specific emitters from a particuiar class of interest to the
MIPR sponsor. A number of very large (megabyte-size) signais were provided by the MIPR
sponsor. Each typicaily contained several transient signals of roughly a thousand sampies each.
The sponsor provided the locations of a few of these transients. The remainder (which comprised
the majority of the available transients) were extracted by hand by plotting the miilion-sampie
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signais as 1000 x 1000 “images” and manually marking interesting segments with an interactive,
cursor-based utility which we developed for this purpose. Later in the program. a morphoiogicai
algorithm for automatically detecting and locating transients was developed ‘and parually tested.
On the MIPR sponsor’s request, work on automatic detection and extraction was terminated so
that the efforts couid be concentrated on emitter classification.

Morphological filtering comprised the core of the classification techniques deveioped and
tested, particularly for signal conditioning and feature extraction. The deveiopment of reliable,
quickly computable, morphology-based discriminants and means for utilizing them was
continued into the third year of the Gabor program, and is discussed in the next section.

4.1.3 Year 3 Effort (Waltham Facility)

A second MIPR was added to the Gabor program to continue work on the specific emitter
identificaton problem. The primary technical objective was to demonstrate the effectiveness and
efficiency of morphological and other modern signal processing techniques for specific emitter
classification using transient signais provided by sponsor. The four key steps performed towards
this end were the preprocessing of selected transients, feature extraction, classifier design, and
performance evaluation. Morphological techniques were appiied during the first two steps, and
were found to have the most benefit for feantre extraction, providing a compact, easily computed
representation of the transients.

Two data sets were provided by the MIPR sponsor during Year 3, hereafter referenced as
the old and new data sets, respectively. The oid data set comprised 23 moderately long signals,
typiéally containing 1000 sampies each. Since our main thrust was classification, i.e., not
transient detection and location, we manually extracted a singie segment. typicaily 100 sampies
long, from each signal. Although the Year 3 "old data set" signais were much smaller than those
from the previous year, they still required manual transient extraction since they also contained
other signal components which the sponsor specificaily instructed us to ignore. The signatures
taken from the oid data set were fairly ciean. The ground truth provided with them divided them
into six ciasses, and appeared reasonabie based on both visual and computer-aided analysis.

The new data set, also provided by the (MIPR) sponsor, was much larger, consisting of 1944
moderately long signals of roughly 1000 sampies each. 180 segments, typically 100 sampies
long, were manually extracted from the collection. In contrast with the oid signatures, many of
the new ones had a very noise-like appearance, probably due to distortion, dispersion, widely
varying band-limiting, and other effects induced by the transmission channel through which the
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signals were received. Furthermore, it was difficuit to reiate the ground truth, which segregated
the signatures into 11 classes, to the observed waveform characteristics.

Similar experiments were conducted on both of the aforementioned data sets. A high degree
of success was achieved with the old data: all but one of the 23 signals were classified correctly.
The lessons learned in both defining the architecture of the various classifier components and
fine-tuning the associated algorithmic parameters were then appiied to the new data. Although a
number of different feature-space representations were tested and a moderate degree of success
was obtained, it became ciear towards the end of the second MIPR research program that
information on the underlying physics of the various emitting devices (unavailable during either
MIPR program) would be required in the future to yield reliable classifier performance.
Nonetheliess, it was demonstrated that even for a data set such as the new one, morphological
measures provide performance comparable to or better than conventional techniques, and they do

so with less demanding computational requirements.

The old data set consisted of 23 signais collected from six different emirters. The signais
from one of the six classes are shown in Figure 4.1-1. It is important to note that the transients,
although similar in appearance, are never in any way time-aligned or "registered”. The classifier
processing to be described is compietely insensitive to the transient starting points within the
extracted segments. (Similar insensitivity can be achieved by conventional means such as taking
the magnitude of the transient's Fourier transform. but at a much greater computational cost).

A high-level block diagram of the classifier system is shown in Figure 4.1-2. As mentioned
above, morphoiogical and other advanced signal processing techniques were appiied in the first
two blocks. Variants of an efficient traditional classifier were used for the last biock. For siénal
conditioning, two fundamental morphological filtering operators, opening and ciosing, were used
to remove spikes and other undesirablie temporal characteristics. Opening consists of a
morphoiogical erosion followed by a dilation. Closing consists of the concatenation of these two
operators in the reverse order.

A two-dimensional example of erosion is shown in Figure 4.1-3. Like all basic
morphological operators, erosion is based on a structuring kernel which is anaiogous to-a finite
impuise response (FIR) filter. The kernel is “slid” across an input signal or image just as is done
with an FIR filter during convoiution. except that each output sampie is obtained from the
minimum or maximum (for erosion and dilation, respectively) of the input samples under the
sliding kernel. rather than the weighted sum of those sampies (as in convoiution).
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Many combinations of morphological and more traditional signal processing techniques
were applied to the-raw signails prior to fearure extraction, as suggested in Figure 4.1-4.
References to number of points indicate FIR filter or morphological kemel sizes. As mentioned
carlier, the segment extraction was performed manuaily. The switches in the block diagram are
shown in the positions which uitimately yielded the best classification performance. They show
that the best signal conditioning was achieved using a 6-point moving average filter.

Time registration and mean removal used | ,
inpiotting only (NOT used in classrier)

§ 9

-2300

-400
-3¢ -20 9 20 40 50 64

sample (piottad w/ time registration)

Fig. 4.1-5a. Effect of signai conditioning; before conditioning.
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The effect of the preferred signal conditioning method is shown in Figure 4.1-5. The first
two plots show the extracted raw signais for a singie class before and after conditioning. Note
that the various signais in theses two piots have been time-registered and have had their means
removed for visual comparison only. The third piot shows the conditioned signals as actuaily
input to the feature extractors.

Given that linear filtering was judged to be best for signal conditioning, the dominant roie of
morphological processing was in feature extraction. For this purpose. variants of a higher-level
morphological product known as pasrern spectra were used. Like openings, closings. and other
morphoiogical operators, pattern spectra can be applied to data with any number of dimensions
(in our case, just one). They are based on sequences of increasingly larger structuring kerneis
which are matched to expected waveform features. These kernels are successively applied to a
given signal and the change in area under the signal stored as a partern spectrum “bin" vaiue (see
Figure 4.1-6). By conventon, the change in area due to larger and larger openings are piotted as
positive values on the right side of a two-sided pattern specorum. Negative values are plotted on
the left for the corresponding closings. (Figure 4.1-6 only shows the openings spectrum.).

Filtering Kerneis
S 3

K2
\ “Opening”
pattern spectrum

Fig.é.l-& Caicuiation of pattern spectrum.

Pattern spectra have a number of attributes which are relevant to signal source identification.
They are sensitive to small signal substructure such as ringing and overshoot. and are
unhampered by repetitive patterns in the data. They are aiso inseasitive to macroscopic artributes
such as temporal registration and overall signal amplitude. Like most morphoiogy-based
products, pattern spectra can be easily and rapidly computed in real-time using special-purpose
hardware based on parallei architectures. and do not suffer from the dynamic range growth
associated with most conventional techniques.
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Fig. 4.1-7. Feature extraction experiments.

Figure 4.1-7 summarizes the various feature extraction methods which were applied to the
"old" data set. (A few additional techniques were applied to the new data set, as discussed later.)
A new type of pattern spectrum was developed during the MIPR program and found to be the
best method, among all those tried, for characterizing emitter signatures. It employed
logarithmically spaced pattern spectrum (LSPS) bins for which kernel size was increased
exponentially (rather than linearly, as done in the fine-grain (FGPS) and coarse-grain (CGPS)
pattern spectra). The log-spaced pattern spectra for the signais from Figure 4.1-1 are shown in
Figure 4.1-8.

Once candidate features were extracted from all test signais, they were fed into a traditional
maximum-likelihood classifier.- Such classifiers assume multi-variate Gaussian feature
distributions characterized by hyper-eiliptical contours of constant probability tor each class i, as
shown in Figure 4.1-9. In general, each estimate of the class S\omega_i$ to which a given
feature vector most likely corresponds is based on the value of i which maximizes the log-
likelihood function

np(w) =43, |-4E-7)" Y, @-7). (4.1.1)
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Fig. 41-8. Exampie of log-spaced pattern spectra.
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Fig. 4.1-9. Maximum-likelihood classification.
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For simplicity, we assumed that the a priori class probabilities Sp(\omega_i)$ and the
covariance marrix determinants S\Sigma_il§ were equal, so that maximizing the log-likelihood
- function from above reduces to minimizing the normalized-axes distance function

E-A)Y, (2=-) 4.12)

The minimum distance (MINDIS) classifier was trained in three different ways, as depicted in
Figwe4j-10.

- training
feature E
vectors

, first f class

' vector ‘ codewords

' per class '

Y
minimum estmated
- distarce [0 classes

switches shown in optimal positions
Fig. 4.1-10. Emitter ciassification experiments.

Mean and median feature vectors were found to be equally effective in characterizing
specific emitter classes. Means are somewhat more attractive from a computational standpoint
since they do not require sorung. Simply taking the first feature vector from each class's training
set, aithough computationaily inexpensive, was (not surprisingly) less effective. The resuits of
apply the mean- (or median-) and first-vector training methods to eight different types of feature
vectors are summarized in Tables 4.1-1(a) and 4.1-1(b). Only 14 features were necessary to
achieve the best performance of 96% correct (highlighted by a box in the table) using the mean-
based classifier. The other boxes in the table highlight signals which were misclassified.
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cinss. (b) Using first feature vector for each ciass.

Table 4.1-1 - MINDIS classifier: resuits for old data set. (a) Using mean or median feature vectors for each
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Versus signal from true class (mmmimmmh, from ciass D):
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Fig. 4.1-11. Sole misciassified signal (nmmIimmune). (2) Versus typical signal from true ciass. (b) Versus
typical signai from estimated class.
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The misclassified 4% of the old data set comprised a single signal from among all 23.
Figure 4.1-11 provides a visual comparison of this signal ("mmm3mmme", from Class D) with
typical signais from its true ciass ("mmmimmmh", aiso from Class D) and the esumated class
("bs_lbs_a", from Class A). The "time-constaats” and other waveform structure associated with
"mmm3mmme" are clearly much more similar to those in "bs_lbs_a" than those in

"mmm immmh".
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Tabile 4.1- 2. MINDIS ciassifier resuits for extended old dats set.

Morphological processing is attractive for the emitter classification problem not only due to
its capability for shape-oriented signal discrimination, but for its ease of impiementation and
computational efficiency as welil. To evaluate the computational compiexity of our techniques
and compare them with more traditional methods, let us define the following:

* the signal 1e9gth. L =71 to 501 (typicaily approx. 100)

* the number of bit per sample, B= 16

* the moving average. 'window length M=6

» the maximum log-spaced pattern spectrum kernel size, K = 64
* the number of classes, @ =6

Let us assume that an addition, subtraction, minimum, or maximum computation has a relative
computational cost of one operation, while a multipiication requires B operations (essentially B
additions). The unnormalized short-term moving average used for signal conditioning requires

Coa =(M-1)L adds =ML ops (4.1.3)
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For each kernel size, k, the log-spaced pattern spectrum needs
Cpex =(k=DL mins +(k~1)L maxs +2L subs +2(L-1) adds =2kL ops. (4.1.4)

Thus, the total computation for the log-spaced pattern spectrum is

oy (0
Co= SCuim 22L)=22"*™ ~1)L =aKL ops
M .

tel2 4k 4.1.5
The MINDIS classifier requires
C, =2(log,(K)+1)Q muls +2((log,(K)+1)-1)Q adds +(Q—1) mins
= 20Blog,(K) ops (4.1.6)
The total computational cost is thus approximately
C=(M+4K)L+20Blog,(K) ops/signal 4.1.7

For the values enumerated earlier, the total computation is dominated by feature extraction, /.e.,
C=4KL ops = 27 kops/signal . (4.1.8)
For comparison, the computation associated with Fast Fourier Transform (FFT) based feature
extraction is
Cerr = Llog,(L) cpix - mul - adds =4 Llog,(L) mul - adds
= 4BLlog,(L) ops , (4.1.9)

Crer = 43 kops/signal (4.1.10)

which compares favorably with the 27 kops/signai required for the morphological approach.

In summary, the performance of the linear filtering signal conditioning, morphological
feature extraction, and minimum-distance classification worked well on the old data set. The
preferred system correctly classified 22 (96%) of the 23 signals in the old data set. Comparabie
results (97% correct) were achieved after also including 12 new sponsor-provided signais. All
processing eiements, comprising unnormalized short-term moving averages for signal
conditioning, log-spaced pattern spectra for feature extraction, and the MINDIS ciassifier based
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on class-wise vector means, were computationally inexpeasive. The morphological transform
typically reduced signature data by 90% and obviated the need for time registration.

" ven the success above, similar techniques were applied to the new data set. Unfortunately,
the ciass “truth” provided with the new data appeared questionable based on inspection of the
plotted waveforms: signal structure varied widely between signals in each class and, more
importantly, there were many suspicious similarities between signais in differen: classes. We
therefore decided to reassign the data to a new set of classes using sophisticated, well-known
classifier tools empioying neural network analysis, and then apply our classifier system to the
data with the new, neural net truth. In addition to assigning the signais to new classes—
discarding sponsor-defined ciass assignments—the neural network program was intended to
determine the true number of classes represented by the new data set. Once the classes were
reassigned, the preferred preprocessing and classification aigorithms which were successful on
old data were appiied to the new data, and alternate feature extraction methods were deveioped
and tested.

Neural network analyses are categorized by two basic paradigms, supervised and
unsupervised. Supervised neural nets learn and generalize existing classes and are most suitable
when the class exempiars are weil known. In sharp contrast, unsupervised neural nets are used to
discover classes in unciassified data and thus are suitable when the underlying classes are
undetermined or vague, as was the case for the new data set.

The neural network program which we sejected for use as our "higher authority" for class
reassignment was SOM-PAK (the "Self-Organizing Map Program Package"), one of the most
readily availabie unsupervised clustering networks. It was built by the team which developed the
theory (KOHO] at the Helsinki University of Technology Laboratory of Computer and
Information Science.- Its one disadvantage is that it does not awtomatically estimate the number
of classes in the data and thus requires a hypothesized number of classes as an input.

The process by which we reassigned classes using SOM-PAK and evaluated our own
classifiers is summarized in Fig. 4.1-12. As evident in the figure, only log-spaced pattern spectra
were input the neural net classifier, whereas all types of feature vectors were used for testing our

classifier.
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Fig. 4.1-12. Classifier performance evaiuation using ciass reassignment.
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The preliminary experiment conducted using SOM-PAK was o search for any degree of
correjation between the sponsor-defined and neural net class assignments for the new data set. It
was hypothesized that the number of classes was 20, a number somewhat larger than the number
of sponsor-defined ciasses (11), with the assumption that excess classes wouid be sparsely
populated. Table 4.1-3 consists of tallies of sponsor-defined class members in each neural-net-
defined ciass. There is no apparent correspondence between the two sets of class assignments.
Had there been any, there would have been only one relatively large value in each row (the first
row contains an 11, a 6, and a 5; the second contains a 13 and a 9; etc.).

sponsor-defined class
a b ¢ d e f g h i j _k {TOTAL

111 3 2 11 3 3 5 0 2 &5 2 38

200 0 1 4 0 0 9 13 2 0O 0 2 31

neural 213 0 0 O 1 1 o 0 O 1 4 10

net 71 1 1 0 2 2 1 1 0 1 1 0 10
class S{ 1 1 o 1 1 2 0 O 3 o0 o 9
41 2 2 0 1 1 1 0O 0 0 o0 2 9

Table 4.1-3. Tallies of sponsor-defined ciass members in each neurai-net-defined class.

The next preliminary experiment was to estimate the number of classes spanning the new
data set manuaily, with the aid of SOM-PAK. Tabie 4.1-4 illustrates the distribution of the
signal population over neurai net classes for varying hypothesized numbers of ciasses. For
comparison, boxes are shown around values from Table 4.1-3. In viewing the number of
members per class, we are looking for a cutoff (a row number) below which the remaining
classes are lightly populated. There appear to be two dominant (heavily popuiated) classes, and
about five classes total plus individual. random (unassociabie) cases.

In the absence of clear information on the number of underlying ciasses in the new data set,
we decided to evaluate classifier performance for various numbers of classes. us shown in Table
4.1-5. The vaiues shown are percent correct using various types of normulized pattern spectra
.(log-spaced, etc.) with training based on mean feature vector codewords. Classes were reassigned
by running the neural net on the LSPS data only once per hypothesized number of classes. The
best performance (76% correct) was obtained by concatenating the LSPS and FGPS feature
vectors, for a total of 42 features.
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hypothesized number of ciasses
ciass 12 14 16 18120122 24 26 281 30
1 62 56 52 46| 38)33 33 30 28§23
2 38 35 35 34| 3127 25 23 23| 22
3 15 14 12 1010111 12 10 10 N
4 1T 10 12 10[L10§10 10 10 10)] 9
5 11 10 11 9{9110 10 9 10} 9
6 11T 9 11 919419 9 8 78
7 9 9 7 9 8 9 7 8 7| 8
8 8 8 7 8 8 8 7 8 717
9 6 7 7?7 7 8 7 7 8 7\|7
10 s 727 6 7?7 8 7 6 7 7|7
11 2 7 6 7 7 7 6 7 6|6
12 2 3 5 6 6 6 6 6 6} 6
13 0 3 4 6 6 6 S 5 6] 6
14 0O 2 4 4 S 4 4 S5 5 S
Table 4.1-4. Distribution of popuiation over neural net classes.
hypothesized number of ciasses
class 12_14 16 18120122 24 26 28 30
1 62 56 52 46 38|33 33 30 28 23
2 38 35 35 34} 31|27 25 23 23 22
3 15 14 12 1001011 12 10 10 11
4 17 10 12 10(L10}10 10 10 10 9
5 17 10 11 91 9]10 10 9 10 9
6 17 9 11 91919 9 8 7 8
7 9 9 7 9 8 9 7 8 7 8
8 8 8 7 8 8 8 7 8 7 7
9 e 7 7 7 8 7 7 8 7 7
10 s 7 & 7 8 7 6 7 7 7
1 2 7 6 7 7 7 6 7 6 6
12 2 3 S 6 6 6 6 6 6 6
13 0 3 4 6 6 6 S 5 6 6
14 0 2 4 4 S 4 4 5 5 S

Table 4.1-5S. MINDIS classifier performance reiative to neurai net ciass assignments.
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| festures #features | %correct
pruned LSPS 14 38
_ | log-spaced pattern spectrum (LSPS) 22 38
|CGPS of compiex enveiope 20 38
fine-grain linear-spaced pattem spectrum (FGPS) 20 37
fast Fourier transform (FFT) magnitude 257 32
coarse-grain linear-spaced pattemn spectrum (CGPS) 20 31
FGPS of complex enveiope 20 29
LSPS of complex enveiope 22 26
FGPS of FFT magnitude 20 25
LSPS of FFT magnitude 22 23
OGPS of FFT magnitude 20 22
fractal dimension 4 19
linear prodictive coding (LPC) modeiling error 10 12
LPC modeling error of compiex enveiope 10 1
{fractal dimension of compiex envelope 4 10

Table 4.1-6. Expioration of aiternate feature extraction methods.

Alternate feature extraction methods were also investigated. The original (i.e., sponsor-
provided) truth was used for this purpose to provide a fair comparison between the LSPS, which
had aiso been used for class reassignment, and other types of features. Table 6 compares the size
and effectiveness of the various feature vectors. All pattern spectra vectors were unnormalized.
As with the old data set, the best performance (38% correct for the new data set) was achieved
with the pruned LSPS comprising only 14 features. Other, much more computationally intensive
signature measures such as FFT's and parametric (LPC) modeling did not improve performance.

4.1.3 Year 3 Effort (Greenbeit Facility)

4.1.3.1 Experiments

In year 3, the second database of emitter data was processed with the Gabor software. This data
consisted of 1944 files which contained several instances of data per file. Many GSPS runs were
made using signal data and other functions as windows. In these cases. the minimum dimension
resuiting from the Gabor processing was higher than in previous runs. because the second
database contained much more compiicated signals. The identification of which portion of each
file was the signal of interest was difficuit, if not impossible without knowiedge of the source of
the data.
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4132 Resuits and Observations

After many attempts at classifying elemeats of the second database, it was dctermined that the
second set of data was unreliabje, and the "ground truth” couid not be known due to errors made

by another contractor when generating the data.
415 Future Work

It is clear that future work on the specific emitter identification problem will be most effective if
the physics of the emitting devices are analyzed and quantified. This was not possible during the
programs discussed above due to the limited availability of supplemental data. It will probably be
necessary to characterize the transmission channel through which the signals were obtained, and

perhaps the data acquisition process, as well.

Armed with all of this information, it should be possible to implement various rapid signal
classification processing techniques. Work performed using the Gabor expansion signal
dimension was promising, but was not further testabie under this year's effort. Extensions might
combine Gabor methods with those based on pattern spectrum and other morphological
discriminants. The excellent resuits (96% correct) obtained for the oid data set of 23 signais
suggest that the log-spaced pattern spectra will provide an effective, efficient method for feature
extraction, in terms of both classification reliability and feature vector compactness. Other
morphology-based features shouid also be investigated since they can be tuned to signal
“appearance”, i.e., they can discriminate various shapes in transients in a manner similar to what
. human analysts do. Low cost, reai-time impiementations are also possible. and shouid be
deveioped and analyzed with respect to size, cost, and power requirements.
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42 AUTOMATIC TARGET RECOGNITION

4.2.1 Problem Definition -
42.1.1 Statement and Importance of the Problem

The detection of smail targets in clutter is a problem of critical importance to wide-area, long-
range, InfraRed Search and Track (IRST) surveillance appiications. In these applications, the
targets (aircraft and missiles) are typically unresoived and therefore appear in sky, sea and terrain
backgrounds in only a few resolution cells. A resolution cell is the partitioning of the search
space in azimuth and elevation. The number of resolution cells that the target spans is

predominantly determined by the system response of the sensor system.

Figure 4.2-1 illustrates a typical IR system. The target and background comprise a scene.
The optical system images the scene onto the detector array which in turn samples the intensities
of the image. The detector outputs are then digitized and stored in a memory array as the
digitized representation of the image. The optical system is characterized by its point spread
function (PSF). This function is the response of the optics to unit 2-D impuise functions or point
source inputs. Circular aperture diffraction limited optical systems typically have an impuise
response with the intensity in the focal piane in a radial direction from center given by:

E(r) = E,[2Jy(m)/ m]*- 4.2.1)

where:
Ej = peak illuminance
Ji(m) = first ord& Bessel function
m=2x(NA)r/ LA
NA = (2 F#)! is the numerical aperture of the system

The system aperture acts as a spatial filter with the above characteristic. bandlimiting the
spatial frequencies passed by the optics. In essence, the pupil function that describes the aperture
is convolved with the scene input to form an image on the detector array. The resuit of the
spatial filtering operation is a reproduction of the scene with the spatial spectral content shaped
by the optics. In well designed IR systems. the detector array makes use of the lowpass
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characteristics of the optics and sampies the image intensities at a spaual rate of at least (wo
times the cutoff frequency of the optics. This is done to prevent aliasing artifacts. The resuit is
an array of data representing the image intensities as sampied by the detector array. This is the
data that must be analyzed to find targets.

A
—~— —
Scene Optical System Detector Arra Sampling and
P y y Data Storage
Electronics

The above IR system showed a two-dimensional focal piane detector array to simply
illustrate the concept. For several reasons including detector technology, upgrade potential and
cost, many IR systems empioy linear detector arrays and a scanning mechanism which scans the
image across the array to provide the second dimension to the data. This is the mechanism used
in the IRAMMP sensor described below. The angular size of a singie.detector in image space
usually defines the instantaneous field of view (IFOV) of the sensor system and the angular
extent of the image scanned defines the total field of view (TFOV). The amount of time that is |
required to cover the search area with the IR sensor and process the data is known as a scan

period.

Because of the nature of the threats. it is sometimes necessary to deciare a target within a
single scan period. Thus. this application not only requires an efficient processing approach but
"also a robust detection performance in the presence of clutter using only singie scans of data.
Horizon IRST systems may not have to contend with exceedingly strong cloud and land clutter
or water glint. This of course is a function of the extent of elevation coverage the sensor
provides about the horfzon. In most cases, one may expect low contrast situations in the vicinity
of the horizon. In addition, IR clutter fields are in general both spatiaily and temporally
nonstationary. This fact weighs heavily on any design of a best filter for detection processing.
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The background data that has been used to test filter aigorithms has been extracted from the
Navy's Infrared Analysis Modeling and Measurements Program (IRAMMP) database. The
IRAMMP database contains an extensive collection of radiometric data including a variety of
backgrounds. The IRAMMP sensor used to gather this data is a dual-band radiometer which
records IR backgrounds in the 3-5 and 8-12 micron bands simuitaneousiy. For each band, a
linear staggered contiguous focal plane array consisting of 120 detector elements is used. The
elements are staggered to allow alignment of the detector active area edges in the vertical
direction. This allows for the fact that if the detectors were mounted in a verucal column with
their edges almost touching, there would be a "dead space” between them where no inteasity
would be measured.

The detectors are electrically sampied in synchronism with the scanning mechanism so that
successive sampies of the image taken from the staggered elements are registered to the same
horizontal location in the image. The instantaneous fieid of view (IFOV) of each detector
element is 0.23 milliradians vertically by 0.22 milliradians horizontaily. The impuise response
of the optical system matches this closely. The optics were measured to have 85% of the point
source throughput within 1.09 IFOV for longwave and 1.18 IFOV for midwave. The total field
of view is 1.6 degrees vertically by 5.6 degrees horizontally. The horizontai scan is ejectrically
sampled 1480 times resuiting in a spatiai anguiar spacing of 0.0664 milliradians per sample.
This corresponds to a 3.3 times horizontal oversampling of the image by each detector eiement.
The sampling in the vertical direction is not as good, being only | times (approximately). The
result is vertical undersampling of the image. with the potential for spatial aliasing artifacts to
occur in the vertical dimension. This is not a probiem for algorithms that work oniy on a single
scan line basis, but the aliasing artifacts could cause a problem for 2-dimensional aigorithms.
The vertical problem couid be alleviated by detector arrays staggered to give at least a 50%
overlap of the image as it is scanned across the arrays. '

The measured IRAMMP detector parameters are as follows: The noise equivaient
temperature (NET) difference is 0.047 °C for the mid-wave and 0.032 °C for the long-wave. The
noise equivalent irradiance (NED) is 2.6 x 10-'4 W/cm? for mid-wave and 2.6 x 10-13 W/cm? for
long-wave. The dynamic range of the data is 84 dB which corresponds to. 15 bits. Thw
uniformity of response across the detector elements was not measured. It is known that detector
point response across the element surface can vary quite a bit from edge to edge. Since the
optics were well matched to the detector size this should not cause any problems. Inaccurate
data resuits when the optics create a spot size much smaller than the element size.
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The IRAAMP background data can have synthesized or real target data overiaid on it
digitally for testing various filter processes. Several different types of detection filters have been
used to date with varying degrees of success. For the detection of weak targets in homogeneous
IR backgrounds, optimal, linear, finite impuise response (FIR) filters have been deveioped. One
such filter is the least-mean-squared filter. The nonstationarity of IR clutter backgrounds
however, resuits in degraded performance for linear filters. To overcome this deficiency,
nonlinear techniques for point target detection have been proposed. Within the past several
years, a class of nonlinear signal processing algorithms, collectively known as morphoiogical
filters, has been applied to machine vision problems and, more recently, to target detection
problems. These algorithms respond to the size, shape and orientation of imaged objects using
computationally efficient logic. The result is an improvement in reai-time response and target
detection capability over linear filter techniques.

Recent work has shown that a filtering process based upon a matrix formulation of the
Gabor transform holds promise as a mechanism for nonlinear processing for the IRST problem.
The Gabor transform can be used as a pre-filter for the morphological processing. The resuiting
combination yields a process that is very much higher in performance than linear algorithms used
in the IRST application. The next section describes the formulation of the aigorithm used and
details the resuits of experiments with the Gabor transform aigorithm.

42.1.2 Current Techniques
4.2.1.3 Applicability of Gabor Transform

The Gabor transform is suggested for the ATR application because it inherently resoives the data
subjected to it into time- and frequency shifted replicas of a window function that may, within
limits, be chosen arbitrarily. When the data is presumed to include replicas of signais, a Gabor
transform with a high degree of time resolution may be appropriate as an analysis mechanism.
For unresoived target IRST, the choice of a window is simplified by the fact that the system
" response to any one target is simply the point spread function of the receive optics.

The optics of the [RST system define, in general. the shape of the response that is expected
at the receiving end of the system. Due to the fact that the system oversamples nine times for
each azimuthal rotation of one degree, the shape of the received response to a singie point target
will be well modeied by a Gaussian puise as shown in Figure 4.2-1.
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422 Experimental Resuits
422.1 Definition of the Test Problem

We will now proceed to the definition of the problem that we used for our Gabor transform
experiments. Fig. 4.2-1 is a cioud scene from an IRST return upon which we superimposed a
stencil of targets depicted in Fig. 4.2-2. The resulting image is given by Fig. 4.2-3, in which we
notice that the targets are not discernible to the naked eye. This is due to the high dynamic range
associated vith this particular type of scenario. Next, we extracted one line in eievation that
contains about 20 targets buried in the cloud cover, and used it as a waveform (Fig. 4.2-4). The
data was then put through a 21-tap lowpass filter and the mean was subtracted out, resulting in
the waveform of Fig. 4.2-5, which became the starting signal for our |-dimensional Gabor
experiments. The question that can now be addressed is whether or not the two-dimensional
time-frequency representation that resuits from the Gabor transform aid us in localizing the
targets. Preliminary experimental results and detailed description of the experiments are

discussed in the following sections.

Fig. 4.2-1. Cloud cover section.
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Fig. 42-2. Targets.

Fig. 4.2.3. Clouds plas targets.

4222 Experiment Description

After importing the 1024 data point signal described above into the GSPS workstation, we
proceeded to test different windows and time-frequency splittings that might yield resuits
deemed promising in either signal cleanup or target arrival detection. To this end we'began by
choosing the time-trequency split to be 256 time points and 4 frequency points, and used the
Longwave point response of Fig. 4.2-6 as our analysis window. In the two-dimensional map of
Gabor coefficients. Fig. 4.2-7, we can ciearly distinguish isolated amplitude peaks corresponding
to some of the target locations aiong the off-DC frequency lines. One will notice that some of
the spikes have smaller amplitudes than others and some of the targets are not really welil
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represented due to time musalignment of the window with respect to the signal. Since we have
chosen the number of frequency points to be 4, in the critcally sampied case it will be sufficient
to perform three successive singie-point shifts of the signal to guarantee that in at least one of the
tme shifts is as well aligned as possible with the chosen window. Figs. 4.2-8 through 4.2-10
represent the three time shifts, in which we can clearly see that different targets line up better
than others for a given shift. Notice that targets that initially lined up best with the response
window showed poorly in the shifts. Each signal of interest showed up most clearly in a certain
time shift.

Fig. 4.24. Unfiltered signal.
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Fig. 4.2-5. Filtered signal containing the targets.
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Fig. 4.2-10. Gabor coefficients at 3 shifts.

In order to address the automatic target localization problem, we decided to perform some
simple nonlinear processing to see if we could isolate the coefficients that correspond to the
target locations. This procedure was done in the following manner. First we decided to use the
power of MATLAB to aid us in this task, so we saved the four sets of coefficients from GSPS in

'MATLAB format and exported them into that application to perform our nonlinear processing.
Once we had the coefficients we processed the coefficients according to the following aigorithm:

Let a0, al, a2, a3 be the set of Gabor coefficients corresponding to 0, 1, 2, and 3 time shifts
of the signal, respectively. Then the following pseudo-code describe the process of combining
Gabor coefficient values across the shifts:

for i=1 to 256
forj=1to 4
J sum(j,i)= | a0(j,i) | + 1 al(j.i) | + 1 a2(j,i) | + 1 a3(j,i) |
en
end

maxval = max ( sum(j,i)) for all i,j
levei = .05 * maxvai
fori= 1 to 256
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if any (120(2.)1,1a1(2i)1,122(2.i)1,1a3(2) | > ievel )
proc_coef(j,i) = a0(j,i) for all j

end
plot(proc_coef).

After the processing has been done, import the array proc_coef of processed coefficients back
into the GSPS system and reconstruct. The coefficient map is shown in Fig. 4.2-11 and the
reconstructed signal is shown in Fig. 4.2-12. Notice that ail except one of the targets were
isolated, and most of the clutter that was originaily in the signal has been removed.
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Fig. 4.2-11. Processed Gabor coefficients,
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Fig. 4.2-12, Signal reconstructed from the nonlinearly processed coefficients.

Clearly it will take some more sophisticated processing to isolate all the targets and decrease
the false alarms, but as a proof of concept this demonstrates that the Gabor transform together
with some nonlinear processing techniques can be of help in the localization of targets in clutter.
Of course more work will have to be done to either theoretically or experimentaily find the
optimal window as well as the optimal grid distribution and signal length in such a way that the
maximal number of targets is detected and the minimal number of faise alarms is recorded.
Other ways to proceed might be to use the oversampied Gabor representation to obtain the Gabor
Coefficients, preprocess the signal further and 2ero out all the points that are negative, and to use
the opumization methods described in section 4.3 to find an optimal window that is some kind of
average of the two window responses that can be expected.

To ascertain that the above observations were not artifacts of the uniform spaci'ng, or resuits
that were somehow inherent to the cloud structure, we aiso ran the following experiments using
the same analysis window, the same time-frequency grid distribution, and the same four time
shifts in order to exhaust the time alignment problem. We took the same cloud sampie as before
but without any targets in it, and used the same analysis window to obtain Gabor coefficients for
zero to three time shifts The unfiltered and filtered cloud signais are given in Figs. 4.2-13 and
4.2-14, while the time-frequency maps are given by Figures 4.2-15-4.2-18. As can be clearly
seen, the structure that is present in the off-DC lines when the targets are present is no longer
there when the targets are missing, i.e.. the aigorithm does not generate faise alarms.




Final TRAPPLICATION OF THE GABOR REPRESENTATION TO MILITARY PROBLEMS

(1] oo
Vi 140404
¥ S
0 nmm
O Seoise n
O fece
g tmr
Nag facrr; | Tiwe

THUL Bl

m‘.-

g e

i :

(J Sigmal |
View: 110402
§ simal
O Noise. : )
0 sigtoise
A L TR
0 tn l ’
Mo faer, | Times L \ ' I
1{21418 'M"
B =

Fig. 4.2-14. Cloud filtered.




O

2ak(Win)
RatZak

Plot
Map

Grid

(0.0)

freq Time

Max=8.807e+02 D=1.072e+02

&
O
D.
‘0

O 0O/

Coeff
Zak(Sig)
Zaikwin)
Rat(Zak

plot
Map

Grid

Fig. 4.2-15. Gabor coefficients at 0 shifts.

e Cosfficients (Zak Method) K
e, —— e ]

View:

(0.0)

Time

Freq

Max=3.515e+02 D=1.163e+02

- —— — — — ——— —— ——

Fig. 4.2-16. Gabor coefficients at 1 shift.

4-36




Final TRAPPLICATION OF THE GABOR REPRESENTATION TO MILITARY PROBLEMS

K] Coefficients (Zak Methed) :
m——'——"—_—————————-
& Coeff )
0O zauSia
O zakwin)

O RatZak

Plot
Map

0 &

Crid

a

(0,0

Freq Time

Max=5.982e+02 D=1.221e+02

Fig, 4.2-17. Gabor coefficients at 2 shifts.

ﬁazW.
View: e

Coeff

Zak(Sig)

Zakiwin)

RatZak)

oood

Plot
Map

0 &

Grid

O

Max=7 977e+02 D=1.269e+02

Fig, 4.2-18. Gabor coefTicients at 3 shifts.

437




Atlantic Asrospacs Electronics Corporation

The next experiment that was performed was the verification that the high amplitude Gabor
Coefficients were not artifacts of the uniform spacing of the targets.
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Fig. 4.2-19. Clouds with non-uniformiy spaced targets.
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Fig. 4.2-20. Gabor coefficients at 0 shifts.
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Fig. 4.2-22. Gabor coefficients at 2 shifts.
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Even though the window succeeded in puiling out the targets, the coefficient map is not as
sharp as the map from the uniformly spaced coefficients. We will now see in Figs. 4.2-25-4.2-
28 that the use of the Mediumwave response window of Fig. 4.2-24 will do a much better job of

pulling out the same targets.
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Fig. 4.2-24. Mediumwave response used as a window.
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One can easily see from the new set of pictures that some of the Gabor coefficients that
correspond to target locations have been magnified, and some of the clutter due to spreading has
been eliminated by the use of the (slightly) different window. Berween the two representations,
all of the targets that are present in the signal appear as large coefficients in the off-DC frequency
lines. This certainly gives a coefficient map that is very similar to the one obtained from the
uniform target spacing, therefore, we conclude that the spiky zones along the off-DC lines are a
true manifestation of the presence of the target and not some artifact due to target spacing.

We aiso tried some experiments based on the foilowing idea. In the impuise responses
resuiting from the longwave, the target will always be brighter than the clunter (this is not
necessarily the case with the midwave responses), and hence all targets will have at least a
portion which exhibits positive values. This implies that we might be abie to take the filtered
signal, arbitrarily zero out the points w'.ich have negative values, and process as before with all
the necessary time shifts. The resuit of this extra signal preprocessing step shouild be that some
of the clutter will already be removed before applying the transform, thereby cleaning up the
transform coefficient map and increasing the visibility of the signal. For all the experiments
described below we used the Longwave response as the window.

The resuit of this zeroing is depicted in Fig. 4.2-29. We then chose a splitting of 2
frequency and 512 time points and obtained the Gabor coefficient map for both of the significant
tume shifts, the result of which is shown in Fig. 4.2-30 (a) and (b). Analysis using a grid of 4
frequency and 256 time points was aiso performed. The resuiting Gabor coefficient map for the
four reievant time positions is dispiayed in Fig. 4.2-31 (a) - (d). Comparison of the Gabor
coefficient maps obtained from the preprocessed and unpreprocessed signals indicates that the
latter tend to spread the coefficient mass more across frequency and consequently cause the
target display to become more shift invariant. ' | |
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Fig. 4.2-29. Signal resuiting from the removai of the negative values of the originai filtered signal.
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Fig. 4.2-30. Gabor coefficients for the processed signal with M = 512 and N = 2. (a) Coefficients for the
unshifted signal and (b) coefficients for the signal after time shifting once to the left.
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Fig. 4.2-34. Oversampied Gabor coeflicients for the processed unshifted signal with M = 1024 and N = 8.
4.2.2.4 Resuits and Conclusions

The experiments performed here indicate potential for Gabor analysis as a component of
unresolved target detection for the IRST problem. Synthetic targets representing replicas of the
receive optics point spread function were distributed both uniformly and nonuniformly across an
observed cloud background. and were found to be visible in processed Gabor expansions that
favored time resolution as opposed to frequency resolution. There is a robustness in the resuits
that indicates stability of the findings with respect to the details of the approach.
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423 Future Work

Extensions of the current work would emphasize several things, among them further theoreucal
studies to gain an explanation of the moderate successes observed in the reported expeniments.
Because of the time resolution inherent in the oversampled approach, further experiments with it
are warranted also. Application of the techniques to additional data sets could be expected to
enhance our understanding of the performance as well as uncover areas where the techniques
shown here are either inadequate or in need of support from other methodologies. In particular.
we are anxious to investigate algorithms which combine the power of Gabor methodologies in
producing data that exhibits signal detection in a few large coefficients and morphological
filtering to aggregate the observed points and replace some “human operator” functions with

machine capability.
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43 MINIMUM DIMENSION GABOR

Under contract to DARPA, AAEC carried out Phase [ and II SBIR studies on the topic of
“Minimum Dimension Gabor Representations.” This work drives at obtaining Gabor expansions
of a set of signals in which the majority of the information about the signals is concentrated in a
few large expansion coefficients. Methods of nonlinear optimization theory are empioyed in this
quest. The work carried out under these contracts produced very positive resuits leading to two
conference publications [SWEE, ORR], but did not compiete the needed research. Some of the
research extensions were carried out under this contract, and their resuits are presented below.

In the following paragraphs we summarize the probiem statement, the theoretical results
produced under the Phase I SBIR and the numerical algorithms and results from Phase II.
Following this the new work performed under this contract is described.

43.1 Summary of SBIR Contract Effort
43.1.1 Probiem Description

Series expansions of signais in which significant features of the signal are captured in a few large
coefficients are desirable. This work shows that given a collection of signals, it is possibie to
find Gabor representations for these that are maximally concentrated in time-frequency space.
The problem addressed is: given a signal set, find the window function of the Gabor expansion
that minimizes an “average dimension” of the signal representations relative to that window.
The' dimension measure empioyed is entropy based and related to the quantum-mechanical
technique where one interprets expansion coefficients as probabilities.

, ‘An iterative algorithm based on partial derivatives of the signal set dimension with respect
to the expansion function was used to evaluate effectiveness of several nonlinear optimization
algorithms in finding an optimum window.

43.1.2 Phase I Accomplishments

The key resuits of Phase I are presented here, and the reader is referred to the final report
and a conference publication for details [AAEC91(2), ORR]. Key findings inciude:
* Proof that the notion of "dimension" is, for a singie signal, completely arbitrary, depending
wholly upon the choice of representation and not at ail on the signal;
* A convincing demonstration that where a ser of signals is concerned, the structure of the set
bears an inherent refation to a dimension that can be assigned—this dimension remains a
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function of the representation, but can be minimized over quite general subsets of all basis
funcuons;

« Recognition that the constrained structure of time-frequency basis sets such as the Gabor.
affine wavelet, erc., make these ideal classes of bases over which to carry out the
minimization of set dimension:

« A determination of a reasonable set of requirements for the definitions of both signal and
signal set dimensions;

« A derivation from these requirements of a signal dimension formuia that is umque to within
a singie parameter and a ser dimension formuia that is then unique to within the assignment
of a weighting function—the formuia combines the quantum mechanical refationship of
expansion coefficients to probabilities and the information theoretic notion of the entropy
of a probability distribution:

» Successful implementation of the signal dimension measure within AAEC's Gabor
processing software testbed (GSPS);

* A useful, though incompiete, classification of signal set rypes in a manner that motivates
physicaily meaningful choices of weighting functions for dimension assignment;

» An extensive compilation of examples of basis set constraints that would allow
optimizarion over more restricted subsets of Gabor or other representation families:

» Deveiopment—via use of Poisson summation and the ambiguity function—of new
characterizations of Weyi-Heisenberg frames (the immediate generalization of Gabor
representations) that should make it easier to perform dimension optimization under
constraints within these structures.

These achievements set the starting point for Phase [I. Having successfully formuiated the
dimension concept and the associated minimization problem, the immediate need was.to discover
the extent to which analytic machinery can be brought to bear on soiving the difficuit noniinear
optimization problem we have created. For example, in basis systems that are defined by a
singie window function, which include most of the cases of interest—Gabor, Weyl-Heisenberg,
affine wavelets, erc.—the soiution consists of determining an optimum window. If there are
sufficiently restrictive constraints piaced upon the class of eligible windows, it should be
possibie to obtain solutions that not only minimize the cost function, but have other desirable
behaviors as well. If we can obtain analytic answers for some simpie but nontriviai cases. the
utility of the techniques will be enhanced. To conclude this aspect it is important to achieve a
software capability that impiements the optimization algorithms that are found.
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43.1.3 Phase I Accomplishments

Phase II concentrated mainly on application of a concept put forth under the prior phase
[AAEC92(2)]. New theoreticai developments were limited to only those needed to carry out the
optimizations or to interpret resuits. The main theoretical idea is of course the deveiopment of
the discrete domain cost function for optimization and the choice of optimization variables.
Carrying out the optimizations over the biorthogonal function has proven quite successful, and
has eliminated an intermediate computational burden, one that could have been quite expensive,
were the window itself directly optimized. We see nothing in the resuits 1o prompt any revision
our underiying methodology.

The final theory topic is the evaluation of computational compiexity of the dimension
functions. We found that a dimension or gradient evaiuation for one signal is an O(P?) process
(recall that P is the number of points in a signal), whereas a Hessian computation is O(P3).
These are reasonably high orders—think of the effort peopie will expend to repiace a traditional
order O(P2) Fourier transform with an FFT. No pressing need to rely on great numbers of
Hessians has been uncovered, so we can probably say with reasonable confidence that the per-
signal computation caps at O(P2). No analysis of the adaptive algorithms was attempted since
there are so many variants, and the run time is data-dependent. i

Initial experiments using a local gradient method were very successful in demonstrating that
iterative techniques can converge to a good solution. A number of other things were observed
from these as well. Convergence to a suboptimum point, i.e.. a local minimum, was seen
- occasionally, and in some circumstances the answer was a very plausibie candidate. In some
cases the converged biorthogonal caused the Gabor coefficients of the signal to be dominated by
a single large coefficient located somewhere other than the origin; the resulting. window was
either incaiculabie or did not resembie the signal. This circumstance. should be regarded as a
successful intermediate result from which the search for a more properly behaved soiution can be
sought. Only oartial success in carrying on from this point was achieved, leaving this
circumstance as one of the candidates for further work.

The more appropriate experiments using the optimization techniques of Matiab and NAG
yield further confirmation that the process would work, but some more surprising resuits were
found. Most startling among these is the observed convergence to highly unstable answers.
There exist cases for which a solution of dimension 1.0 is found using a window having a very
large dynamic range of values, on the order of 10!5 in some cases. In generai these windows
tend to pile up at the end of the interval. and yield Gabor coefficient distributions in which the

4-52




Final TR:APPLICATION OF THE GABOR REPRESENTATION TO MILITARY PROBLEMS

large coefficient is offset to the last time point but not offset in frequency. The instability of
these is seen when the artempt to reconstruct the signal in GSPS after clipping off the low
coefficients fails violently, apparently due to numerical errors. The NAG routines usually reach
a happy termination in these cases, confirming that the cost function being used is inseasitive to
the behavior.

In other cases, the optimizations terminate at low (well under 2.0) dimensions and find
windows that resemble the signal except for some usually spiky irregularities. These runs scem
to be finding local, not global, minima, and are cause for some concern, because the excessive
behaviors of some of the other undesired termination types are not present here. On the other
hand, the resuits are not unusable. Convergence to slightly suboptimum answers may in many
cases be almost as good as finding the best answer. Although we would be well advised to
understand the phenomema at work here, it is not clear to what extent these resuits represent
problems to solve in the future.

The issues raised by the single signal cases remain when muitipie signals are present. There
are cases in which the window ‘blows up’ as described earlier, but still yieids a low dimension
representation for each signal.

In other respects the resuits are encouraging. In this light we cite the experiments in which
the optimum window was sought for a signal set containing time transiates of a decaying
exponential. The dimension of such sets was computed for families of exponential windows,
and the intuition about those resuits is that the exponential window is not quite optimum. It was
not until the muliti-signal optimization code was working that we could look for the optimum in
such a case. When we did, we found a window with strong exponential characteristics that stably
represented all eight signals. The dimension of the set was similar that found with the best
strictly exponential window. S

New issues encountered during the muiti-signai runs reiate to computation time. The effort

-to compute dimension or its derivatives scales linearly with the size of the signal set, and there is

no apparent way to decrease this. Overall run time is somewhat unpredictable despite our

understanding of the computational burden of dimension-reiated evaluations, because the number

" of evaluation calls is both data- and method-dependent. These observations tend to confirm the

suspicion that optimum window analysis is an off-line activity. This is not at all a poor finding,

given that many of the envisioned applications of the techniques—e.g., signal detection and
classification—might fall into such categories.
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Resuits of the Matlab minimization runs indicate that the choice of algorithm is somewhat
data dependent. From the six algorithms tested, two minimized the dimension in all the
experiments, and the other four algorithms failed for certain experiments. Therefore the first two
algorithms can be considered more reliable, but not necessarily the optimum in ail cases.

It was also observed that the number of iterations was reduced by using the gradient if it was
available. When the gradient was suppiied, the Cubic Interpolation line search method was seen
to perform better than Mixed Polynomial Interpolation; fewer function evaiuations were

performed. but more gradients were evaluated.

The Simpiex Search minimization method performed the worst, resuiting in a successful
minimization in only two out of six experiments. In the two where it did finish, the number of

iterations was the largest of all the methods.

The NAG optimization routines have been shown to be capable of determining Gabor
representations with minimum dimension. This capability has been demonstrated both for
simpie functions and more complex real world signais, and for singie and muitipie signais.

The initial estimate of the biorthogonal is only marginaily important in controlling if, and
how efficiently, the optimizing routine finds a solution.

In general, the quasi-Newton optimization method empioying a user supplied first derivative
of the cost function (dimension) yielded the best results. It required fewer iterations to converge
than the quasi-Newton method with the finite difference approximation to the first derivative,
and ran considerably faster than the Newton method which empioyed a user supplied second
derivative. Each method seemed equaily capable of finding solutions.

Linear constraints on the cost function during optimization were heipful when a priori
information about the biorthogonal was available. For the more compiex transient signais, where
the optimum biorthogonal is not known, linear constraints were not helpful.

The best number of frequency and time points (M and N) for a given number of sampies
depends somewhat on the signal. For signals with detailed features near the beginning, better
" solutions were generally obtained when M > N. For signals without meaningful content near the
beginning, M < N generally produced better resulits.

Solutions were found for the muitipie signal experiments where the average dimension was
less than if one of the signals were empioyed as the window function.
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Use of the free parameter in the dimension formuia (exponeat r ) was not fully expioited in
the tests, but we were abie to determine some consequences of varying it. Larger vaiues of -
were found to speed convergence in cases that were already convergent at smailer r. Large r
tends to emphasize the greatest Gabor coefficient and push the distribution towards the desired
shape; consequently, the optimizer sometimes behaves as though its job has become easier, and
presents results that appear to have stopped short of reaching the ‘eyeball optimum.’ The overall
conciusion is that low r is the most sensitive case, and may be best for fine tuning a resuit, while
a larger value of  might be used to get to the vicinity of an acceptable solution. Algorithms that
automatically adjust 7 en route according to criteria rejated to these observauons can be imagined

for the future.

4.3.1.3 Conclusions

We have shown that it is possible to begin with a collection of signais and find a Gabor
representation of these that is maximaily concentrated in the sense of the dimension function
defined in Phase . Some of the computed exampies show significant differences berween a
window function found using optimization techniques and a more naively chosen one, some do
not. As expected, the techniques developed here are not automatically candidates for every
application. Instead, they provide a body of technique that may enhance the ability to carry out a
few procedures. Further evaiuation must await their application to some tasks.

43.2 Extensions Under Current Contract

4.3.2.1 Optimization Tools

The extensions under this contract were a continuation of the noniinear optimization experiments
using a more compiex and powerful NAG routine, EO4UCF than the previously used aigorithm
EO4KAF. The important properties of the EO4KAF routine are displayed below:

* Quasi-Newton algorithm

+ Uses anaiytic gradient (first derivative)

» Builds up surface curvature information (Hessian, or second derivative)
+ Incorporates bounds on independent variables

The NAG routine. EO4UCF, is more powerful because it allows the user to control more
optimization parameters. It performs noniinear optimization. inciuding bounds on the variables.
linear constraints. bounds on the linear constraints, nonlinear constraints. and bounds on the
nonlinear constraints. It uses a sequential quadratic programming aigorithm in which the search
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direction is the solution of a quadratic programming problem (NAG). Its propertes are listed
below:

- Sequential quadratic programming algorithm

« Minimizes smooth noali function subject to .

« Takes analytically specified first partiais

* Approximates unspecified first partiais by finite differences

* Incorporates linear and nonlinear constraints

* Incorporates bounds on independent variables, linear constraints, nonlinear

43.2.2 Experiments

Numerous experiments were performed with the EO4UCF optimization routine to determine
average windows for several test cases.

The NAG routine EO4UCF was used with several combinations of bounds, linear and
nonlinear constraints. Experiments were performed with two signali sets: a single signal, and two
signals. The one signal case used a real signal chosen from the first data set of the fauit
identification section, with a Gabor lattice of M =4, N = 16. The two signal case was composed
of a rectangular puise and a decaying exponential, with M =4, N=4.

The bounds and constraints were chosen from the available set of:
* Bounds on the variables
* Linear constraints
* Bounds on linear constraints
* Nonlinear constraints
 Bounds on nonlinear constraints

The choice of these bounds and constraints permitted the control of the minimization process to
avoid convergence to unstable resuits.

Three types of constraints were used and they are described below:
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+ Type 1: Nonlinear. Restricts exponential growth of biorthogonal signal envelope

Desired constraint is of the form shown in Fig. 4.3-1. but hard to use because of lack of
smoothness

max{|b||by), |bs} bal} = ocmax{|bs, b} b, ||}
max{ bs),|bs |, |ba); |bs|} 2Q maX{IbgLIbmeuleul}
max{b9"}blo"3bu‘:lb12'} 2 max{]bwI,]bml,]bu{,]bw"}

® @® Max magnitude point of group
0 O Non-maximum points

T TT?? 90!
l o L [e]
.

Flg.4.3-l Noniinear constraint that controis exponential growth of the biorthogonal on the basis of the
largest magnitude vaiue within each Gabor time slice.
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This type of constraint was replaced by pointwise comparisons as shown in Fig. 4.3-2:

by| > albs,
bs| > alb,

by| > aibg), [by| > crfby], |bs] > byl
bs| > atlbyl, [by] > albyy, |bs|> iy,
s |bro| > atlbia)s |Byy| > ailbys), |Bro| > by

?

bo| > by,

Ve

Fig. 43-2 Nonliinear constraint that controis exponential growth of the biorthogonai on the basis of the
magnitudes point-by-point within each Gabor time siice.
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* Type 2: Nonlinear. Controls dynamic range of biorthogonal within first Gabor time
interval. The need for this can be seen by examining the inversion that creates the window
function from the biorthogonal in the matrix Gabor method. Not usable due to non-
smoothness. Not needed thus far.

maxifbl}

1sis4 =~ - $4

min{B} ©

1sis4

- max{h)

] ]

Y
~ ~—— min{}b}

Isi<4

Fig. 4.3-3. Noulinear constraint that controls mgemthintheﬂtncnborﬁmeml.
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* Type 3: Linear: Restrict positive exponential growth of biorthogonal

by > aby3, by > abyy, by > abys, by > abyg

Fig. 43-4. Linear constraint that controis exponential growth of the biorthogonal on the basis of the largest
magnitade value within the first and last Gabor tizne slice.
The objective, or cost function, computed the minimum dimension of the signal set for each of
the experiments shown in the following figures. For the singie signal figures, the initial
biorthogonal was a rectanguiar puise.

The single signal cases were made with a transient signal from the first data set. Fig. 4.3-5
shows the constraints used, the signal, minimized biorthogonal. the window, the Gabor
coefficients, and the dimension was found to be 1.06. This appears to be an excellent
minimization resuit, because the dimension is very close to 1. However, the resuiting window is
a singie negative spike with ampiitude of 1.7e+21, not a useful window. This is the resuit of
" convergence to an unstable minimum. This indicates that the minimization process needs to be
constrained to avoid convergence to this kind of unstable minimum.

Fig. 4.3-6 shows the same case as in the previous figure, except that the NAG routine EO4UCF
was used, and nonlinear bounds and constraints were applied. The resuitant window was
reasonable, and the dimension was still low, at 1.75.
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|

Singie signal - Method EO4KAF
Bounds on variables Y
Linear constraints N
Bounds on linear constraints N
Nonlinear constraints N
Bounds on nonlinear constraints N
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Fig, 43-5. Transient signal - bounds, no constraints
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Single signal - Method EO4UCF

Bounds on variables

Linear constraints

Bounds on linear constraints

Nonlinear constraints

Bounds on nonlinear constraints

Contfinionts (Manin Stothedd

mmmm i3

OO0 ®BDOD B

1.75

D=

Fig. 4.3-6. Transient signal - bounds, and nonlinear constraints

4-62




Final TR:APPLICATION OF THE GABOR REPRESENTATION TO MILITARY PROBLEMS

Several experiments were performed with a two signal set: a rectangular puise, and a
delayed exponential. For all of the two-signal minimization experiments, a random initial
biorthogonai was chosen. This initial biorthogonal and its corresponding window are shown in
Fig. 4.3-7. -

Before artempting to find an optimum window, each of the two signals were used as a
window in the computation of Gabor coefficients, as shown in Fig. 4.3-8 and 4.3-9. In Fig. 4.3-
8. the puise is used as a window, which happens to be the same as the biorthogonai. The lower
coetficient set reproduces the puise, and the upper set reproduces the exponental. The average
of the two dimensions is 1.98. Similarly, in Fig. 4.3-9, the exponentai used as a window resuits
in a average dimension of 1.503. What we are looking for is an optimum window that produces
a minimum average dimension. Figure 4.3-10 shows the optiinization result using the NAG
routine EO4KAF, which uses bounds on the variables only. The resulting average dimension is
1.496, very ciose to the previous case.

The next experiment (Fig. 4.3-11) used the EO4UCF method with bounds on the variables
and linear constraints with bounds. The four linear constraints used were the Type 3 constraints
mentioned eariier. The resuit was D = 2.00, showing that this type of constraint did not succeed

in decreasing the average dimension.

Figure 4.3-12 shows the resuit of using bounds on the variables and tweive Type | nonlinear
constraints with bounds. The average dimension is lower, at 1.887.

The value of a, the coefficient in the Type 1 constraint equation was then changed from 0.5
to 1.01. The previous case was run again. resuiting in Fig. 4.3-13. The minimized biorthogonai
was constrained as expected, but the average dimension was higher. The same case was run
again with alpha = 1.02, with the resuit shown in Fig. 4.3-14. The average dimension is now
lower, but the biorthogonal has changed to nearly a rectangular puise.. Apparently, the
optimization aigorithm is very sensitive to changes in the constraint function.
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. Initial biorthogonal chosen randomly (upper panel) -
. Corresponding window (lower panel)
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Fwo signais - No optimization
Window equais rectanguiar puise
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Fig. 4.3-8. Two signais - no optimization, window equais rectanguiar puise.
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Two signals - No optimization
Window equais exponential puise
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Fig. 43-9. Two signals - 0o optimization, window equais exponential puise.
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. Two signais - Method EO4KAF
Bounds on variables Y
Linear constraints N
Bounds on linear constraints N
Nonlinear constraints N
Bounds on nonlinear constraints N
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Fig. 43-10. Two signais- bounds. no constraints.
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. Two signais - Method EO4UCF
Bounds on variables Y
Linear constraints Y
Bounds on linear constraints Y
Nonlinear constraints N
Bounds on nonlinear constraints N
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Fig. 4.3-11. Two signal case - bounds, linear constraints.




Final TREAPPLICATION OF THE GABOR REPRESENTATION TO MILITARY PROBLEMS

i

Dav - 1.887

Fig. 4.3-12. Two signal case - bounds. nonlinear constraints.
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Two signais - Method EO4UCF (a = .9)
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. Two signals - Method EOSUCF (a = 1.01)

Bounds on variables Y
Linear constraints N
Bounds on linear constraints N
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Fig. 4.3.13. Two signal case - bounds, nonlinear constraints.
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. Two signals - Method EO4UCF (¢ = 1.02)
Bounds on variables Y
Linear constraints N
Bounds on linear constraints N
Nonlinear constraints Y
Bounds on nonlinear constraints Y
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Fig. 4.3-14. Two signal case - bounds. nonlinear constraints.
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4323 Observations

With these additional optimization runs, we have managed to minimize the dimension where the
biorthogonal function previously did not converge to a reasonable state. The addition of
nonlinear constraints and bounds, along with the sequential quadratic programming minimization
algorithm. has given us much more control over the optimization process. It was observed that
the minimization can be very sensitive to changes in the constraints. This was seen in the
significant change in the resuiting window function resuiting from a small change in the vaiue of
alpha in the noniinear constraint equation.

43.3 Future Work

The work presented above makes a positive extension of the results originally obtained under the
SBIR and provides further justification of the ideas that first lead to this line of endeavor. The
task remains unfinished, however. Research to date has not compieted the task of determining
the best constraints to use in optimizing windows, and the bugs in using the optimization
software have not yet been compietely worked out. Work has been siowed somewhat by this
situation. Using simuiated annealing for optimization has also been suggested, and AAEC is
currently looking into available software packages for that purpose.

In summary, the effort so far has proved in principie most of the supporting concepts, but
has been insufficient to transition the work into the applications arena as yet. AAEC sees
particuiar promise for this technology in certain appiications areas, and is planning to propose
effort in those areas. A key area is automatic target recognition (ATR). Initial work in applying
the Gabor transform to problems within that discipline is reported elsewhere in this document.
Machine-aided recognition probiems have the feature that searching for objects can be enhanced
in circumstances where shape characteristics of the objects are partiaily known in advance, either
through a priori knowiedge or data-aided algorithms. For example, in signal analysis, the Gabor
transform is particularly adept at finding features having a common enveiope.

To maximally exploit such a circumstance, extraction-of the analysis window from the data
looms important. Given a large body of data such as that often encountered in an ATR problem,
use of the data to drive the analysis functions seems wise as a measure to cut the amount of blind
search, especially in view of findings that ailegedly more “robust” toois such as the Wigner
 distribution can create artifacts through nonlinear processing if not used carefuily. The role for
optimum Gabor windowing in this scheme is ciear, and as a resuit it appears that the best way in
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which to continue the line of work discussed above is 10 do it within the context of an application
area such as ATR.

The research is at the point where it could profit from the interaction with reai data as an aid
in algorithm development/refinement. AAEC anticipates proposing a body of work of this
nature as a logical follow-on the work performed in both this contract and the cited SBIR's.
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APPENDIX A
STATEMENT OF WORK

AAEC will perform the following work items, segregated by year.

' Year 1:

. Proposed Theoretical Developments: Study methods to improve the stability and
accuracy of the Gabor coefficient computations; perform error analyses to understand the
accuracy of approximation achieved by truncated, finite Gabor expansions.

*  Software Development: Develop software code on a GFE Aspen computer 10 execute
the new aigorithms for Gabor analysis. This inciudes fuil debugging and achieving operational
status.

. Comparative Analysis of Competing Methods: Investigate the utility of competng

methods. inciuding other double series representations. Wigner distributions, non-abelian
harmonic analysis, etc.. for the problems under anack.

. Potential Applications: Begin to investigate potential application of Gabor
representations t0 military problems. and use the tentative resuits to guide the needed
theoretical developments. Test problems to be chosen from those in the proposal.

Year 2:
«  Potential Appiications: Continue to investitue potential appiication of Gabor
representations to military problems. and use the tentative results to guide the needed

theoretucal developments. Test problems to be chosen from new areas discovered during
first-year investigations and discussions with interested parties at DARPA and eisewhere.

*  Software Upgrades: anmnexxsnngsoﬁwmandaddnewcanabﬂmsaswdw
improve ability to modei potential applications.

Year 3:
. Continuation of Year 2 work items.

Full Statement of Work disciosed to DARPA and availabie upon request.
A-1
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APPENDIX B - -
ACCURACY AND STABILITY PAPER
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COMPUTATIONAL ACCURACY AND STABILITY ISSUES
FOR THE FINITE. DISCRETE GABOR TRANSFORM

Rogelio Balars and Richard S. Orr

Atlanuc Aerospace Electronics Corporation, 6404 Ivy Lane. Suiee 300. Greenbeit, MD 20770 USA

: ABSTRACT

A Gabor expansion may empioy highiy nonorthogonal
basis funcuons and consequently inhent accuracy and
stability problems due to near-singuianty when computed
digitally. Two methods 0 discrenze the Gabor transtorm
are studied from the viewpoint of controiling numencal
proverues: (i) a Zak transform-based method and (ii) a
mamix method. Theorencai issues reisang o the singuiar
behavior of each are cited. and stabilization techniques are
provosed. We demonstrate the validity of each echnique
with resuits of numerncal experiments. concluding that
stability and accuracy can usually be achieved in 2
diginaily impilemented Gabor transform by proper choice
of aigorithm and swbilization mechamsm.

1. INTRODUCTION
A Gabor expansion of an L(R) function is a doubly
infinitwe senes of the form

fiye T S amawmal®) M

= S s

in which the (ama) 2re the Gabor coefficienss. and the

{Wma) are ume and frequency wransiations of a window

funcnon. w(t), that are the basis of the expansion. The
properues of the expansion are highly dependent upon the
behavior of the window with respect to- the ume-
frequency iatice {(fuein)) ={(m/ T.aT)) that supports
the basis. The parameter 7 2 0 miugates the tume and
frequency resoiution of the transform. Many of these
properues are readily expressed in terms of the Zak
transTorm of w,

- Zw(v,T)=m iwlk?#r)exp(—ﬂtm.. (2)

kD

This researcn was supported by the Advanced Resesrch Projects
Agency of the Department of Defense and was monnored by the
Air Force Office of Scientific Resesrch unaer contract No.
F49620-90-C-0016. The United States Government is
uthorized 10 reproduce and distnoute reonnts 1or governmental

If the modulus of the Zak transiorm of w. |Zw], is
constant aimost everywhere, the -{w, .} are orthogonal
and well behaved. When |Zwi has a smail dynamic range
{small ratio of its maximum and mimmum vaiues), the
expansion is nonorthogonal but still quite stable. The
difficuit case is when Zw has a zero within0S 1< 1.0
< UT. The formal expression for the Gabor coefficents.

lITT
I Zﬂ" L2 T L2 R(VT = mt/ Diavat. ()

does not then necessarily represent the Founer corfficients
of an LYR?) function. and it impiies an expansion for
which the above eguanon does not aiways vieid a refiable
basis for numerical evaiuation of theiay . ;-

For computaton by the Zak method. (3) must be
repiaced by a fimee, discrete equivaient. Any aigorithm
for this has the resuit

MIAN! ZF(V Tp)
a-.‘- , ——————
NMZW( q° 'p)

Sampling and penodization can be applied in a way that
rezans much of the corresponaence (0 the continuoOUs ume
expansion (1. 2). In this paper we consider mansforms
made discrete by sampiing and truncanon.
Mmmmemumummvlmmhtym
carry over to the discrete case. In parncuiar. it is easy ©
see 1n (3) the impact of a zero of Zw. Even if Zfand Zw
have a comnciding zero. the rano ZfZw may not be weil
defined. When |[Zw] maxes a close approsch 0 zero at
some grid pont. the rauo can become very large there.

expli2mav,r - mt, / T))(4)

" and dominate the expression for the coefficients. Ways ©

control ransiorms with Zak zeros are given in secton 2.
A second approach is to eat the sampied equations
for the Gabor wansform as a matrix and soive for the
coefficients by mawx inversion. The stucmre of the
mamzx is such that the inversion can be performed
efficienty (3. 4). For reasons of compieteness. we will
now inoduce the rudiments of the mamx formuiagon. If
one swarts with the Gaoor transtorm given oy (1),
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uniformiy sampies fatevery A= T/M(t,nk(T/M )}
kml2...MN=P. and wuncates the expansion after P
ponts. ONE ODLAINS the representanon

Mol N
flig)= T T amam{ty —nT)exp(j20m, / T) (5)
mwl) nu(

which can be wnnen in mamx form as

p.(w E )A . (6)

where F and A are P x | coiumn vectors corresponding o
the signal and the (reordered) coefficients respecnvely,
and W and E are P x P matnces corresponding (o the
values of the window and the exponentiais associated with
the rocanons around the unit circle. As it mrns out. the
matnnx W 1s block iower trianguiar and each of the sub-
blocks i1s diagonal. The sub-blocks which lie on the
diagonal are ail eguai and correspond to the vaiues of the
window over the first M pomnts. and sumilarly ail the sub-
blocks on the M off-diagonal are egual and contain the M
values of the wingow after skipping over /M - | ponts.

The mamx E aiso has a parucuiariy nice form. It is
block diagonal. all of the sub-blocks are equal. and the
enmes of the sub-blocks are the enmes of the Founer
rotation mamx. Consequenty, E is invertible aniyucaily.
With this in mind. we can solve (6) for the unknown
vector of Gabor coefficients and we obtain

AsE-WTiR. )

Since the inverse of E is analytcaily calculsted and welil

benaved, the stability issues are solely associawed with the

inverdbility of W. The structure of the inverse of W and

the resuiting swbility issues will be discussed in secton 3.
2. ZAK METHOD EXPERIMENTS

2.1 Theory
The stability of a continuous tme Gabor representation
can be gauged by the size of the rano

max |zwv.of
C = J5v<lT0S5<T

min |Zw( v. ‘tf
0Swel/T.0St<T

t:))

which acts as a condition number of the wansform. This
number is aiso the frame bound ratio of the wansform (5].

When impiemented by a discrete Zak method. the
Gabor ransform is characterized by the same ratio
sampied on the ume-frequency grid.

veaa/NT.t=2ml /I M:0Sa<N=~1.0Sm<M=1. (9

If Zw has a zero on the grid. the condition rano will be
infimite and the ransform aomnvertible. Resticwuxd wo (9),
C need not be nfimite when (8) 13. lethng the discrete
ransform possibly be more stable than the conanuous.

Three methods of sabilinng the discrese Tansform
ate illustrazed. We start with a discrete domain window
having a Zak wansform zero on the gnd. In the first
method. we move the zero of the Zak wansform off the
grid by a subtie change in the shape of the window
funcnon. The second method is 1o apply a ume and/or
frequency transiation to the original winaow that reiocates
the Zak zero according o the formuia

2{ f1- ro )Pt
e/ T T v vy, T= T, ). (10)

A third method is t retain the window funcuon but
change to a new grid on which the zero no longer lies.

22 Experiments
The window function empioyed for the expenments is

w(r) = rexp(—atu(s), (11

where a is a positive decay constant and « is the unit step
function at the onigin. The Zak oanstorm of (11) is

c—cf[ r4+(T = ﬂ‘-uﬁ'uv)ﬂ

Zw(v, )= [] -,-4-*1'2"'7]‘ (12)
which has a singie first-order zero at the pomt
(v'.t')a(-—l-,-—rr). (13)
2T 1+e?

Notce that the zero lies on a frequency grid point when
the number of frequency points A is even, but the time
location of the zero is arbitrary within (772, 7).

For an N by M Gabor wansform. the vaiues of a lying
on the grid are obtained from (13):

a--l-ln{i-l); O<cm<M/2. (14)
T \m

The following experiments use N = 16. M = 16. Fig. |
shows the window. and Fig. 2 shows the Zak transform
for the choice a = -1.94591. Because of singie-precision
roundoff in the caicuiation. the condition number (8) is
8.523 x 10!3 and nox infinite at this pont. If we choose
the decay constant according to the formula

a--!-ln( M -I). (15
T \m+in2
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e Zak zero will lie midway between gnid pomts. For the
cnoice a = -1.68640. we find the Zak ranstorm shown i
Fig. 3 with condition numoer C =4.175 x 10°

T winsew
View: 1 9e~01 g -
& wwnaow =N
i
=l BN
) ~
Mag facter:
= L =
8 ‘
Cj §Mm -
o 459=01 -
e | fane= -
€ ! '

Fig. | - Analvsis winaow

= Coetticionts (2as Mgnen)
o
G Comt
O 2w | !
B 2w |
0 wmtae
8 cre

o0

Nape) SO0=02

! Souares Ronene S22001S 0=4.0009000
Fig. 2 - Zak wransform of the wwndow. The

transjorm has an anatviicgl cero om a nme
Jrequency grid powni. The condinion number s
dispiaved on ihe lower (eft hana corner.

The behavior of a ransform having a Zak zevo near
the grid is quite sensitive to the choice of a. For exampie.
choosing a = -1.94590. a change in the 5 significant
digiL. changes the condition number bv 4 oraers of
magnitude 10 1.618 x 10! When the zero 1s placed
mudway between gnd points the seasiuvity 1s much less.
for exampie. both 2 = -i.68640 and 2 = -1.68641 vield C
=4.175 x 102 10 four significant figures.

Fig. 4 illustrates one appiicauon of our second
method: the window having the on-grid zero is ume-
aeiayed by 7/2M (one-haif sampse) before sampiing. and
as a resuit the condiuon number (8) of the Zak wansiorm
becomes C = 2.513 x 107.

Expenments showing the third method of relocating
the zero of the Zak ransiorm oy means of a gnd change
are not inciudea due 10 space iimitatons

(asttimouss (L6 casman)

] D.OD'“
il

Fig. 3 - Zak transiorm or the anaivsis winaow.
where the anatvucal zero has been moved off ine
grid by adjusting the ime consiant. The condition
number 13 dispiaved on ine iower eft hana corner.

i

® Ooao0

Castt
Iniigip
Tuitvred
fenRatt
(-]

nare! 908002
Sowred Mane~23120007

Fig. 4 - Zak iransiorm of the wundow afier the
anaivucal zero has been moved off the gnd bv
deiawing the wandow arrival uime. The condinon
niswber 13 snown on the lower ie1t hand corner.

3. MATRIX METHOD EXPERIMENTS

3.1 Theory

As we mennoned earlier. the stability of a discrete ume
mamx Gabor representauon depends oniv on the inverse
of the winaow funcuon which we will denote by B due 10
the biorthogonality relavonsnio oetween B and W. The
form of B s idenucal to the form of W. and its entries are
given by the recursive rejation

By =~Wo~' (W, Wy~ - W,_Byr...-W,B;;) (17

where the subscript [ = (.1.....V-1 denotes the distance of
the block from the main diagonai. Cleariv the oniy part of
W that gets inverted is the block associated with the first
M pomts of the window funcuon. and therefore. a
necessary condition tor invertibility 1s that the window be
NONZETo everywnere in that region. Even if that condituon
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is satisfied. it does not imply that the mamnx B will be
well bensved. Nouce that as we proceed furtner down the
off diagonais. ie. as [ gets larger. the last term in (17) will
be muiuplied by the ™ power of the inverse of W. This
essentally means that comparauvely smail vaiues of the
window over the first M points can lead 10 vaiues at the
uil end of the biorthogonal which are undesireably large.
A measure of the stability of the window can at least
empincally be charactenized by the biorthogonal having
no small values over the first M points, compared to the
values over the rest of the window values.

3.2 Experiments

The wincow function used for the mamx expenments is
the same as the window used for the Zak method
expeniments with the ume constant corresponding (0
placing the zero of the Zak ansform on one of the grid
points. If we choose this window as i3, we know a-pniori
that the biorthogonal will be infinite, since our window
funcuon has an analvucal zero at the ongin. and this
violates our iniual necessity condition for inverubility.
This probiem can. of course, be alleviated. If we shift our
window to the left by 27/M. ie two points. the window no
longer has a zero on the interval contaiming the first M
pornts. and the biorthogonai is well benaved as is shown
in Fig. 5. The vaives over the first M points are not
significantly smaller than the rest of the values. and the
set of vaiues over the whoie interval are bounded by, in
this case, 13.0. One of the other ways 0 obtain a nice
biorthogonai is w increase the ampiitnde of the original
window by a constant factor. ie. add a value of 0.2 o
every point of the window. The biorthogonai
corresponding to this window has values that are bounded
by 23.0. and it is dispiayed in Fig. 6.

[ 2J wineow
View: 1.3.401T : | ’ |
O wingow -
B Qioren
Meg Facoer:
=3 I [ A g
HE f ;
1
- Time=
- 44e~01 |
= e L |
8 ! 4.3¢=01 P !
a4t t» —5'

Fig. 5 - Biorthogonal 10 the anaivsis window
whose zero has been shified two nme sampies o the
lefi. The maximum vaiue of the biorthogonal 13
S1ven on the upper ieft hand corner of the axis.

) 4. SUMMARY
The initiai mouvation that led to the deveiopment of the
matx representauon of the Gabor transform was to

alleviate some of the problems associated with the Zak
wansiorm of the window having a zero somewhere 1n the
region of intevest. As we have shown in the above
expenments. the existence of a second method to
calcuiate the coefficients does not guarantee a stable
coefficient set. -

£ = —
5 e ”‘”i “
& o ‘ [
== i |||
=l
el

LI mg;z' =

Fig. 6 - Biorthogonal to the anaivsis window afier
adding a consiam: vaiue of 0.2 (0 everv wingow
sampie. The maxunum vaiue of the biortogonal is
S1ven on the upper left hand corner of the axis.

One has 1 resort 10 some further knowiedge of the
sgucture of the window function in order t ootan resuits
that are not sensitive 10 small permrbagons. It is the
belief of the authors that by appropriately uilonng the
window, the instabilities associated with one or both of
the methods can be minimized. and at least one of the
methods will give satisfactory resuits.
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Abstract.] Recent interest in the Gabor wansform for time-frequency signal analysis can
be atributed in part to increased knowiedge about the accuracy, stability, and complexity of
algorithms for computng the transforms. Behavior of the computations depends on. among
other things, the manner in which the continuous-parameter equations are made discrete and
finite. The most swraightforward means, truncating the time functions o compact support and
sampiing, relinquishes some control and biurs the relatonship of the discrete eguations to the

original transforms. A more satisfying discretization and finitization process that preserves
relations to the continuous parameter case is found by periodization and sampling, the same
method used o obtain the finite, discrete Fourier transform from the Fourier inwegral. By this
method we derive the ﬁn.ite. discrete Gabor transform equations from their conunuous

parameter counterparts. in the process explicitly exhibiting the aliasings that permit one
periodic sequence © be the finite, discrete Gabor transiorm of the other. By examining the
various forms in which the Gabor equations can be expressed, we discover how the input.

window, biorthogonal funcuon., Gabor coefficients and Zak transforms map under

periodization and sampiing.

‘mismurenmsunoomcbymomm Research Projects Agsncy of the Depanment of
Detenss anc was monitored by the Air Force Office of Scientific Ressarch under comract No. F49620-
90-C-0016. The Unmed States Govermnment is authonzed !0 reproduce and distribute reonnts tor

govemmental pUIDOSes NOTWIthSIANGING any cOpyngnt NOIation hereon.
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1. Introduction

The Gabor transform has recently attracted a certain interest in time-frequency signal
processing because of its ability to portray ume history of the frequency content of a signai or
image by representing the data as a superposition of uniform time and frequency transiates of
a window function. Through choice of the window, a Gabor representation can expioit a priori
informauon about the signal that is useful in probiems of signal detection. feature extraction.
and identificauon.

To some extent, current interest in Gabor technique is fueled by successful developments
related to compuung the transforms. Since Bastiaans first considered the question of solving
for the Gabor coefficients, given the input function and the window (9]}, it has been recognized
that this computation can be ill-posed, leading to questions of accuracy and stability of the
resuits. Although Bastiaans illustrated that certain choices of window lead to particuiarly
quirky representations and provided some insight into the mechanisms, much was left to be
categorized. In the ten years following his valuable work, certain of the practical probiems in
performing the computations necessary to evaiuate the transforms have come under careful
scrutiny. Introduction of the Zak transform in the role of operational caiculus for the Gabor
theory has led to an xmproved understanding of the underiying mappings, and this in turn has
shed light upon the supporung computational processes. Although this task is far from
compiete, much more is now known about the accuracy and stability of algorithms for
computation of the Gabor transform (5, 6]. In addition, the computational complexity of these
algorithms is also better understood (23, 24]. We can now safely pay a little more attention
1o what it 1S we ouyght :0 compute. |

In deriving digital computation algorithms for the Gabor transforms, one must first make
the equations discrete and finite. The most straightforward means is to truncate the time
functions t0 some compact support and sampie them at a rate that captures their significant

behavior. This process relinquishes some control over the end product and bilurs the
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Nonetheless. some consistent theories can be developed in this manner. Wexier and Raz
[27] have suggested a discrete formulaton in which the ume extent of the window funcuon is
truncated. but that of the biorthogonal function is not: anhermore the frequency index
remains unbounded. Those authors have commented that the unbounded supports make this
form ill-suited to digital computation. _

More recently, Balart (7] has developed a finite-dimension marrix formuiation of the fully
truncated case. in which it can be argued that the "true" discrete Gabor coefficients are
produced when the window has bounded support. The approach of Auslander et al. [2. 6],
which uses the Zak transform. is fully discrete and finite, and produces an invertibie transform
when no sampie of the Zak wansform of the window function is zero. The coefficients
produced by this aigorithm, however. can differ considerably from those produced by Balart's
method. as numericai experiments performed by Balart and the author have shown. Both
methods are highly useful wansforms that nevertheless differ slightly from the conunuous
parameter Gabor transform. Resuits of the two converge for windows having sharp
disconunuities, deviating more and more from one another as the window appears 0 become
contnuous. This is not unexpected based on the Zero Theorem of Ausiander and Tolimieri
(4. Theorem II.2], which states that if the Zak transform of a sufficiently rapidly decaying
functon is continuous. it must have a zero. It is empirically wue that the two methods are
nearly the same if the Zak transform of the window has a narrow dynamic range, but they can
diverge if the samples of that Zak transform make a ciose approach to a zero.

A discretization and finitization process in which some of the relations to the conunuous
parameter case are preserved would be more satsfying and wouid lend insight into how
successful the more brute-force approach might prove. Wexier and Raz [27] have presented
the sampied approach for periodic functions—one of the methods discussed in this paper—
through a matrix formuilation. and Ausiander et. al. [2, 6] have given the Zak transform
relauonships under periodization of the signal. The conuibution of the present paper is a

unified treatment of discretization of the Gabor transform and its ancillary functions by
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periodizing and sampling.

The Gabor discretization issue parallels what is done in transitioning from the Fourner
integral to the finite DFT, where periodizing and sampling in the time doman likewise
periodizes and sampies the frequency domain picture. Moreover, the two periodic sequences
so created are related by the finite discrete Fourier wansform (DFT). The resuit for a
function f and its Fourier wansform F |

v = j— dt fit) exp(-27w), ()

is that the following two sums are a DFT pair [25]:

(EA16 + kPTIPY) = {JT- I Alq+ VTl pr e z 2)

For this rather remarkable formuia——in which the essence of the Fourier wransform property is
maintained under sampiing and aliasing—to hoid, the sampling rates in the conjugate
domains must be properly reiated. One sampies f at spacing ; = T/P, for positive T and
positive integer P, and the resulting sequence is aliased at every P-th sampie. The
spectrum is then sampied at inW fs =1/T and also aliased at the P-th sampie, resulting
in two sequences of period P. The relation |

Pfa, = 1 a (3)

characterizes the parameter constraint.

It is important to keep in mind that equation (2) tells us nothing about the resemblance of
these finite discrete sequnces to their parent. continuous parameter functions; however,
conditions under which one xs essentiaily a sampied version of the other are well known. In a
clever work, Ausiander and Gritnbaum (3] have explored signal-independent error bounds for
this comparison. in the process numerically verifying the necessity of condition (3).
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derive all the discrete finite Gabor transform equations from the conunuous parameter
versions through the method of periodization and sampiing, in the process expiicitly exhibiung
meﬂmmgsmnpermitonepeﬂodiiseqmtobemeﬁnne.discre:eGabormsformof
the other. By examining the various forms in which the Gabor equations can be expressed.
we discover how the input, window, t?ionhogonal funcuon. Gabor coefficients and Zak
wransforms map under periodization and sampiing.

Section 2 briefly summarizes the continuous parameter Gabor equauons. giving the
fundamental definitions for and relationships among the: (i) signal. or function to be expanded.
(ii) window functon. (iii) biorthogonal function. (iv) Gabor coefficients. (v) Zak transforms.
(vi) inner products in the time and Zak domains, and (vii) sampled auto- and cross-ambaguuty
functions of the signal and window. In Section 3, we transform the synthesis equation that
recovers a function from its Gabor coefficients into discrete, periodic form. The inverse
transformation is visited in Section 4 in terms of the biorthogonal function. In Secuon 5, the
Gabor relations expressed in terms of Zak wansforms are discretzed. Behavior of the inner
product of Zak transforms under the discretization process is shown in Section 6.
Relationships that permit solution for the Gabor coefficients to be expressed as a
deconvoiution of the sampied crossambiguity function of the signal and window are analyzed
under periodization and sampling in Section 7. In Section 8 we obtain the Gabor coefficients
of the DFT of the given signal. Our concluding observations appear in Section 9.

c-7




Attentic Aerospace Elsctronics Corporation
2. The continuous parameter Gabor equations

In this section we summarize without proof resuits that serve as a basis for development
of the discrete equations.

2.l. Definition (synthesis formula)

A Gabor representation of a time function f{?) is a series expansion of the following form:

f)= 3 3 auaw(r-nD) exp(2rmdD), (4)

L. A N X X J

in which {@m.n), m.n € Z, are the Gabor coefficients, and w(t), the window.
Translates of w(z) over the von Neumann lattice having a unit area cell of dimension T X
(1/7) in the time-frequency plane form the Gabor basis {wmx(?)}, as follows:

Wm.a() = w(t- nT} Xp(2xmsT);m,ne Z. (5)

In this regard. the Gabor expansion may be compared (o its genetahzlnon. the Weyi-
Heisenberg expansions, which can use any deasity of basis functions 2 I [13, 14, 18].

In general, the {wm 4(f)} are nonorthogonal. and (4) is a nonortbog@ expansion.
which is the reason one must take some pains to assure accuracy and stability of aigorithms
that compute the transformation. Gabor expansions can be orthogonal. but this is neither
required nor aiways desirable, as discussed in [13]. Conditions for orthogonality of the
Gabor basis are found in Boon and Zak [10]. These can be expressed in terms of the auto-
ambiguity function of the window—see Tolimieri and Orr (26}—and a general construction of
orthogonal Gabor expansions has recently been developed by Coifman er. ai [11].
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which we denote by g(1). and define in notation different from Gabor’s:

a0 = (4" 52F)

where o is the RMS puise width. The normalization in (6) is that the window has umit’
energy, or L, norm. which is a convenient condition we shall assume throughout for all
windows:

lgiP = j‘ dt |g(nP = 1. M

Heistrom [19], in 1966, demonstrated the continuous parameter version of Gabor's
Gaussian expansion and noted the relationship to Glauber's conerent states of quantum
mechanics [16]. In 1967 both Montgomery and Reed (22] and Crum (12] published on the
expansion of functions in other than Gaussian eiementary signals, generating what was then
viewed as a continuous parameter Gabor-like transform that would later be cailed the short-
tume Fourier wansform.

It was in Bastiaans [8] that the biorthogonal function for the Gaussian window was
introduced. In later considering other functions for the window role, Basuaans [9] provided
the basis of modern Gabor theory by his concern for the inversion of Gabor’s representaton.

2.2. The biorthogonal function ( analysis formula)

In the biorthogonal method. one uses both the basis functions {w,, ,(¢)} and a related set
of biorthogonal functions|bwn(8)), ' |

bm.a(t) = b(t- nT) xp(2emdT). m.ne Z, (8)
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(w,..,,b,,) = f dt wit - aD) b" (1 - qT) expij2xim -p)IZ'] = O idms- (9)

When such b(r) exists, (9) permits analysis of f into its coefficients by inner products of
fit) and the {bu.a(f)} according to the formuia

o

amn = (f bma) =f dt 1) bua(t), (10)

2.3. The Zak wransform
A second method of writing the Gabor coefficients is based upon using the Zak transform, a

time-frequency mapping given by

Zfivy = 2, fUT + 9 xpGRekvD). (11)

ks oo

“Taking Zak msfé-rms on both sides of (4) yields the following relation among the Zak
transform of f, the Zak transform of w, and the Gabor coefficients (2. 6, 21]):

ZAV.D = ZW(VD) 2 3 Gu, XPEREGMIT- nVT)). (12)
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The {ama) are found formally by inverung the two-dimensional Fourier series on the nght:

Zw(v, 7

T ur
G ® f dr I avFUD o 2nmaT+ v (13)
0 0
If. however. Zw has a zero where Zf does not, Zf7Zw is not an L3(TxF) function. where
T=[0.7) and ¥ = (0. I/T). ZffZw can be L!(TXF), in which case Gabor coefficients
can be computed from (13), but may not be square summable. and any muncated
representauon that uses but a finite number of them can bave large errors.  Also, a Riemann
sum approximation to the doubie integral may not provide numerically accurate formuias.
Issues related to stabilization of this process are not discussed in this paper.
The relationship between the window and biorthogonal functions is reciprocal in the Zak
domain: Zh(v, ©) = W[TZ*w(v, 7)].
Synthesis of f from (11) follows by inverting the DFT after recovering ZAv, 7) from the
{amn) via (12):
ur

fAkT+ 1) = Tj dv Zflv, 1) exp(j2rkvt), ke Z te T. (14)
0

2.4. The deconvolusion methods

Deconvolution permits recovery of f from its sampied short-time Fourier transform (STFT)
{(f1Wm.a)}), using the fact that the Zak transform is an isomorphism. preserving inner
products to within a scale factor [21]:

Zf129 =%Zflg), (15)
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where

g T
- Zf\Zg = f dvf dt ZRv.7)Z g(v.T ). (16)
0

0
In (18] and [21], the authors define the Zak transform with a2 normalization that makes the
scale factor in (15) unity for all 7. Multiplying both sides of (12) by Z*w(v, 1),

ZAv.D Zw(v,D) = 1Zw(v.DOF 3 D a,, expli2n(muT- nvD)), (17

and computing the Fourier coefficients of both expressions reduces (17), after simpiification,

to the convolution (2]

F1Wma) = 2 2 Gpg(¥! Wmepnegh (18)

P W oo q-c.

This equation can of course be obtained more directly from (4) by taking the inner product
indicated on the left and employing the shift theorem [20). For present purposes it is the
Fonﬁermsformof(lﬂmnisofmm |

Equation (18) is often used in comparing the Gabor and short-time Fourier transforms
(1). It shows the ‘smearing’ of the Gabor coefficients by the window-dependent kernel to
pn;dncetheS‘l'Fl'. If a function w is used as a window in both transforms it cannot have
both the smoothness desired for spectral analysis and the frame strucmre that stabilizes the
Gabor expansion, as expiained by the Balian-Low theorem [17).

Extraction of the Gabor coefficients from (18) requires deconvolution of the sampied
STFT. Fourier analysis of both sides of (18) converts (17) into:

C-12




L T

Final TRIAPPLICATION OF THE GABOR REPRESENTATION TO MILITARY PROBLEMS

’i i if 1w, ;) exp Dzarv‘r-:vn]\

s

la- [ m.-rl [
sl i Zw(v, DP : (19)

Deconvolution is aiso the generalized inverse for incompiete Gabor expansions, providing
the coefficients of the orthogonal projection of f onto the subspace spanned by the basis

vectors.
In the following sections we convert the formulas of each method to a seif-consistent set

of equations that describe the finite, discrete Gabor wansform. obtaiming tools that are
amenabie 10 digital computation of the transforms.

3. The synthesis formuia

In this and the following sections we develop ihe finite discrete Gabor relauonships.
Derivation of the first formuia is presented in full. Following that derivations are reigated to
the Appendix.

The starting point is (4), from which we evenwally want to prove (33), which expresses
the sampies of the periodized signal (29) as a function of suitably periodized window sampies
(30) and Gabor coefficients (32). We periodize f{(¢) to a period that we restrict to a
muitipie of T, NT:

fly= 2 flr+ kNT), | (20)

koo

and formally write the Gabor expansion of fyr(r) as

fi= Y Y T auaw(i-naT = kNT) exp [2rm(t - kNTYT). 21

C-13
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If we make the following rearrangement of (21),

fad= 2 X a..,.[z w(t- (n - kN)T] jexp ([2mm:/T), (22)

we see that the periodization of f resuits in a corresponding periodization of window,

w"‘l‘(').
wa() = z w(t + kNT), (23)
k= o
yielding
fa®)= 3, 3 Gma wnrlt- aT) exp{2nmu/T) (24)

By (24), the Gabor coefficients are invariant to this joint periodization of the signal and
window.

An interpretation of more immediate use resuits from a rearrangement of (24). Replace n
by its moduio N representation, n =g + sN, where 0 S g SN - 1,5 € Z, and repiace the

corresponding sum by a double sum on g and s:

- - N'l
= 2 2 3 Gmqesw Wil - gD exp{i2eme/T). (25)

Mmmees smee 9=0

The periodicity of w has been exploited in reaching (25). Reorder the summations so that

the innermost is over s. the time index of the coefficients: -

C-14
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Final TR:APPLICATION QF THE ATION TO MILITARY PROBLEMS

The bracketed term in (26) is a time-aliased Gabor coefficient

g™ = 3 Gmgemm 0SgSN-L. (27)

P K. J

By (26) and (27), periodizing f{7) similarly periodizes the window and the {am,) in time.
Now sampie fyr(?) at the M-th harmonic of 1/T, so that the k-th sample occurs at
ume kI/M. The resuiting sampied sequence then has period P = MN, and (26) becomes:

* N1
=3 2 o ap RrmkiM), (28)

mus gm0

where we have introduced simpier notation for the periodized dza:a and. window:

AP = fur(kTIM) (29)
‘wip’ = wyr(kT/M). (30)

Now apply moduiar x‘epreseﬁtation to the frequency index m, since the compiex
exponential in (28) has period M in m. Letm=p+ M OSpsM-l.rel, and
reorder the sums:

AT R
=X [Z a,‘,”lm] Wi pg XD [2RA(p + rMY M), (31)
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This operation periodizes the Gabor coefficients in frequency, motivating the definition

aMM u 3 aM e -_i 2 GperiqesN- (32)
rem-- s T FZ )
Combining all the above we have
p Ml A
2= 3 X aMM WP, api2rkpiM). (33)
p=0 qul »

In summary, the finite discrete Gabor representation of the periodized and sampied f
uses the periodized and sampled window function and the doubly periodized Gabor
coefficients of the parent continuous parameter signal.

4. The biorthogonal formnia

This method begins with (10), which expresses the Gabor coefficients as inner products of f
and the set of biorthogonal functions, and executes the periodization (32). Following steps
similar to thc above we find

P-1
oMM = L% (P p" , exp2mmriv). (34)

rul

Thus the process of sampiing and periodizixig replaces the integral expression for g, , by a2
Mw.dhmwm«pmmqofmeumleipeﬁoﬁzﬁdmmdgMysampledmd
periodized set of biorthogonal functions. The factor /M in (34) is the sampiing interval and
takes on the roie played by the differential dr in (10).
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In (12), which states the reiationship of the Zak wansforms of the signal and window, we can
repiace the index variables as follows:

m=p+rM, 0SpSM-1,reZ (35)
n=gq+sN,0SqgsSN-1l,sel :

and sample in tme and frequency, ie.

=Jd. r=ol
v Gl T - (36)
to get
M-1N-1
(Zfhom = (ZWh.m 2, D, 4% ™ expi2x(mp/M-nqiN)). (37)
p=0 qul

Above we have introduced a shorthand notation for the Zak wransforms,
ZAnINT. mTIM) & (Znm - (38)

The intermediate steps are found in the Appendix. Inversion of the 2-D Fourier series
immediately yields |

ah = —‘-“Z.l by Zlep expj2mimpiM - ngivy). (39)
MN J5 gm0 DVies

Next we show how to recover the finite discrete version of a function from its Zak
transform. starting from (14) and periodizing. The periodization effects sampling in the
frequency variable at spacing 1/NT. Then sampiing at t=pT/M.0<p < M - |, yieids
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fm{(ﬁd-kﬁ wfP = IVLNZ.;(ZIL,,apO'anqIN); O<p<M-lLkeZ  (40)
o= .

Formulas (37) and (39) show thar the discrete Gabor coefficients will exist either for all
fin L3%(Z/P) when Zw has no zero on the sampling grid. or in general, in the subspace of
functions f whose Zak transforms vanish at the zeros of Zw. Via (40), the P sampies of f
canberecoveredfromthel’sampisofitsZakmsfombya'setofDFI's. Because of its
quasi-periodicity, the Zak wansform acquires no additional periodicities in the process.

6. The inner product formuias

To streamiine the derivation of the finite discrete deconvoiution equations in Secuon 7, we
will need to know how inner products map under periodization and sampling. Let /(P and g(»
be two periodized, sampied functions. A natural definition of their inner product is

(7P 1gP) = 3' fm{ﬁ)gm(‘i) S sl (41)

p=qQ
We find that the resuit may be written in either of the forms

M

(ﬂh Ig(ﬂ = Z (Z (ZKYI.M
=N Z Y b (28" Womm: (42)

muQanl

Zz

2:
--°

Thus the inner product of two periodized, sampied functions is proportional to the 2-D inner

product of their Zak transforms.




=

7. The STHRISRMREICATION OF THE GABOR REPRESENTATION TO MILITARY PROBLEMS

The equation for the deconvolution of the periodized. sampied Gabor coefficients from the
sampied short-ume Fourier transform is readily found from (33). Take the indicated inner
product and apply the shift theorem to the indices, yieiding

M-1N-I :
(fP1wD) = 3 3 alM (P, . (43)
. pu( qul

In the appendix we show how this resuit may be found via the Zak wansform.

The correspondence of (43) to (18) is ciear. The doubly infinite. two-dimensional
convolution has been replaced by a finite, end-around convolution. Again, the doubly aliased
Gabor coefficients take the roie formeriy played by the Gabor coefficients of ).

8. Gabor transform of the DFT

The Gabor reprsentation of a signai and its Fourier transform are tghtly interrelated by
way of the Fourier wransform of the window. If we begin with the discrere representarion (33)
and take the DFT, we have

-] N-
Eo APexpe: JWP)A k;o Eo q}_:o aM:M P xp(RR(mN - PP (44)

Performing the summation on k first isolates the expression

N-1|
w®P = Y wP expeRnks/P), ' (45)
k=0

which is the DFT of the window. In terms of this quantity, the transform becomes
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M- N-
eSS awm s aptmi - miginy (46)
pul qul

In (46), the r-th DFT coefficient is expressed via a Gabor expansion whose coeﬂ'xcignrs are -
those of fand using window w. The roles of time and frequency have been interchanged and

there is a sign change in the exponential. This formuila can be put in an aiternative form that

recovers some of the lost symmetry by replacing ¢ with N - n and denoting the Gabor

coeﬂ'm‘emsoffas

A(N.M) (M.N) . (47)

Exchange of time and frequency roles is now complete; the coefficients of f With respect to w
are now the coefficients of f rotated 90° in the time-frequency piane:

AP = Z Z N0 5P expi2n(r - mNWINY (48)

nad mul

9. Observations

The equations deﬁning the continuous parameter Gabor transform have been converted to
finite, discrete form using periodization and sampling. The periodic sequences (/") and
{alM-M}, where: 0 S kS P .1,0SPSM-1.0SgSN - L become a Gabor transform
pair. In the linear transformation reiating these, the window function is repiaced by the
periodic sequence {w(P),0S k<P - 1. When the biormogonu function is well behaved,
the {afM) can be obtained from an inner product of the data, (fi '), and a sampied,
periodized version of b. Relationships involving the Zak transforms map similarly; the
continuous arguments are replaced by discrete omes, Zf — {(Zf)4.,}. without

‘periodization. Likewise, the convolution equation for the Gabor coefficients converts to a
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form exhibiting cross-ambiguity functions invoiving the periodic {f; ') and {w (P},

In applying the Gabor wransform to signal processing problems. one would like 10 have a
clear correspondence berween the finite, discrete formuiation used in computauon and the
continuous parameter equations of the theory. Specifically, one wants to see the analog
signal, window and biorthogonal functuons map into a finite set of their sampies. and to bave a
finite set of Gabor coefficients that (i) are defined over a time-frequency region where the
coefficients of the analog signal have significant values, and (ii) are approximately equal to
the latwer coefficients in that region. Creating the correspondence by periodizauon and
sampiing makes this relatively straightforward. Since Gabor coefficients are aliased in time
and frequency in the discretization, one needs to assure that the replicas are sufficienty
spread to prevent significant overiap. This is done by choosing the signal period to be
suitably long with respect to the lengths of the signal and window functions. and by sampiing
at a rate high enough—essenually a composite Nyquist rate—to caprure the significant
frequency behavior of the signal and window. A sampling theory for Gabor expansions will be
the subject of a forthcoming paper by the author, but in its absence one can still be confident
that when these guideline precautions are observed, computations made with the finite.
discrete Gabor transform should faithfuily reflect the behavior of their continuous parameter

counterpart.
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Appendix

Proofs for Seczion 4:

Writing the ume index in (10) in mod N representation gives

Am.n vV = ] dr fe+ qlVT)b;..(t). (Al)
and therefore
Z Gm.n vqV = f-dr[z S(t+ gNT) |by a(0). (A2)
q--. -l q--.

Periodizing the Gabor coefficients with respect 1o frequency yieids

-g= - = e

avgl‘.‘im = Z Z Gm + pMan +gN = f dr [z e+ qNT):”;Z bv;+pu.n(f)} (A3)
q.-.p.- —.
The biorthogonal summation in (A3) can be further developed:

S b ol = D bmnlt) XDERRPMIT) = by (0) > exXpeRTpMIT).  (A4)

1A B PR e P B s

The summation of complex exponentiais can be recognized as proportional to the formal
Fourier series of a train of impuises separated by T/M. The r-th Fourier coefficient of such
‘a train of unit impuises is given by
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M -
67!'[ dt [ )y a:-mmJap(-;zm = 671,-. (AS)
0 km s
impiymng )
S bmepuan® = baad (L) T &1- k1) (A6)
P km .

When this is inserted into (A3), the impuise functions sampie the biorthogonal funuons,

yieiding

aiMM = -,5 i P bm.n(ﬁ (A7)

k m o0

where £ is the sampied. periodized f, see definition (29). We exploit the periodicity by

writing the index k in terms of its quotient and remainder modulo P,k =r + Ps,

rearranging the sum to yield

p.| =
> ™ (r - $,
am“.‘n'm = “M" z ‘z fr(T:Pbm.l{ ] ]

ru M

P-1 -
= z}jﬂi;z bem. T} (A8)

ru

The bracketed term is the periodized. sampled biorthogonal function that can be written in the
notation of (29) and (30) as
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b expzomrib) = 3. b JCET) (A9)

i X )

lenting us write the final resuit as in (34).

Proofs for Secnion J:
Beginning with (12), and making the change of variables indicated in (35), we have

-1 N1
ZRAv.1) = Zmv, r)Z '>" Z 2 Gperitqs MXPU2R(p + MOTT- (@ + SNWT)]} (A10)

rEman §m a0 pm0 gul
Sampiing (A10) on the grid given in (36) yields

-1 N-1
(Zln.m -(Zw)uZ Z Z S, Gperitee s XDU2R(P + rMYIM- (g + SNYUN)]}.(AL1)

2 T NI ) p=0 =0
Upon simplifying the exponential terms and recognizing the inner double sum of the Gabor

coefficients over p and g as the doubly periodic corfficients. (A11) becomes

far(z+ kD) = D ft+ kT + NgT)

q--

T
Z T f dv Zf(v, 1 exp(2x(k - Nq)VT)

q--

ur ' -
T f dv Zf(v, D exp(2zk VI D, expl2xNg VI (Al2)
A z

g% -
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M-l N-I
(ZFhm (Z¥rshom = 2V (Z0rslom 2 2, a¥M expl2ximp/M- ng/N).  (A21)

p=0 qul

Now sum both sides of (A21) over m and n. The left and right sides become, respecuvely,

.“-l N-I .
2 Z (Z o (ZWr.shom = N(f‘n |W|S,?> (A22)
m=u0naul
and
M-1 N-1 M-1N-T
S Y (2w (Zwrshae 2 2, oM expl2rimp/M- ng/N))
mu0n=nl pul gul

M-l N-I M-1 N-I
=3 2 alm > Y (Zwhm (Zwr. shun XPl2R(mp/M- ng/N)]
om0 g=0 m=u0a=n

M-1 N-| M-1 N-I
= Z Z d&‘:‘m Z z (Zw}l.u(zwr-p.:-;l.n

pm0 gmuo mu0n=nl
M-I N-I
=N 3 N wPiw?, g (A23)
n=0 gm0 ’

Combining the above. we have (43).
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The summauon above is recognized as the er senes of a omcmm‘ﬁ

ur
fm(‘t+ k) = T[ dv mv D ap(ﬂn:k 78 Z 6(V-NT)

0 q-—-

-
-

N-1
= #Eo z(E 1) exp(2mkq/N). . (A13)

Proofs for Secrion 6:

We derive the inner product formula via the Zak transform in this section. Equation (41) can
be rewritten repiacing p with its representation mod M, p = nM + m. where 0 S n SN
-l.and0OSmSM-1: |

M-1 N.1|
(fP1gP) = > P e ) (Al4)

mu( ra

O

b

Now replace the sampies i and g{” by their discrete Zak transform representations (40) to

get
M-1 N-I T
(fP1gP) = > Y [—L Z (Zfh.m etp(iZ::srlN)] [-L Z (Zghnon exp(;'Zmzr/N)J
mm0 rm0 s=nQ n=(
M-1 N- RN ]
=3 3 X @hnlZghn Z explj25(s - n) rfN] (A15)
- N mu()s=0n=) ru0

Now recognize that
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N1
2. xpij2%is - n)rIN] = N§,.,, (A16)

rul

so that (A15) takes the form given in (41).
Using the easily proved relationship [20]

Z'(v.o = ZTR-vD (AL7)

and the periodicity of the Zak transform in its frequency variable, The Zak transform of g can
be expressed in terms of the conjugate of g:

(28;& = (28.)-5.01'3 (Zg.)N-u.au (A18)
from which we get (42).
Broofs for Section 7:

We multiply both sides of (37) by (Zw);_n, finding

M-1N.1| '
Zfhm @Whm = [(Zw)epP L 3. aM explj2nimptM- ngiN)). (A19)

p=0 gm(

If we multiply (A19) by exp{i2%(rp/M - sq/N)), the ieft-hand side becomes
(Zf . (Zw ) eXD(2%(rp/M - 5g/IN)] = (Zfhm (ZWr sl (A20)

where the second factor on the right is interpreted as the (n, m)-th sampie of the Zak
- ransform of w.;. The right-hand side of (A19) wransforms similarly, leading w0

C-28
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APPENDIX D
MINIMUM DIMENSION GABOR PAPER
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EXPERIMENTS IN DIMENSIONALLY-OPTIMUM GABOR REPRESENTATIONS

J. Sweeney. R. Orr. R. Baian. D. Buchanan and A. Humen

Atlantic Aerospace Electronics Corporation. 6404 Ivy Lane. Suite 300. Greenbeit, MD 20770 USA

ABSTRACT

Series expansions of signais in waich significant features
of the signal are capwured in a few large coefficients are
desirable. This work snows that given a collection of
signals. it is possibie to find Gabor representanons for
these that are maximaily concenwated in ume-frequency
space. The probiem addressed is: given a signal set, find
the window function of the Gabor expansion that
minimizes an “average dimension” of the signal
representations reiagve to that window. The dimension
measure empioved is entropy based and reiated 0 the
quantum-mechanical techmque where one interprets
expansion coefficients as probapilities.

An iterative aigorithm based or partial derivatives of
thesxgmlsetd:mmon with respect 10 the expansion
function was used 0 evaluate effecuveness of several
noniinear opumizanon aigorithms in finding an cpumum
window.

1. DIMENSIONALLY OPTIMUM
REPRESENTATION

Series representations of signals in which most significant
features of the signal are capwred in a few large
coefficients are desirable in probiems of dewection. feamre
exwacuon. charactenzauon and data compression. Many
standard expansions—e.g..  ciassicai Fourier methods—
have but littie flexibility to adapt to charactenisucs of the
data. Time-frequency or ume-scale representauons
-encompassing a family of transforms specified by a
window funcuon (or analvzing wavelet), however, have
great potenual 10 accommodate the data under analvsis by
seiecuon of a weil-matched wansiorm. To date there
seems 10 have peen littie effort expended in achieving
some of this potenual for economy of representanon.

A theory for seiection of good basis funcuons is
described in a prior publicanon (1]. This theory centers
on defining a dimension—(irst for a signal and then for a

This researcn was supported by the Advanced Research Projects
Agency of the Depantment of Defense and was momitored by the
U.S. Army Missile Command unoer contract No. DAAHO1-91.
C-R271. The Umited Suates Government is authonzed o
reproduce and distribute reprints for governmemal purposes
notwithsianding any copyngit notauon hereon.

signal ser——in terms of the expansion coefficients
generated by the signais under a partucuiar represeatanon.
In this paper we report early expenments in impiemenung
optimization techmques to use the theory in obtaimng
dimensionaliy-optmum Gabor expansions.

2. THE DIMENSION OF SIGNALS
Time-bandwidth product is a familiar measure of the
compiexity of a signal. The B7 product is intnnsic. i.e..
independent of the representation applied. By contrast. the
measure sought here is 10 be used n preferenuaily
seiecting among representations. and thus shouid be
representation dependent. The same shouid be true of the
dimension of a ser of signails. aithough such a measure
begins 10 take On a more iNINSIC nawre as suiabie

Since dimension 1s tied to the representanion in force,
all its propertes shouid be expressible through the signal's
expansion coefficients. When the expansion 1s a Gabor
representaton of $;(t),

siV=STal Wm0, M
- mn

where the { w,, ,(t)} are time and frequency wansiations
ofawindowfupcnonw(t)m.dimonisuwusdin
erms of the { a, , ).

We have imposed six ‘reasonableness’ requirements
on a definition of dimension. each expressibie in terms of
the signal. the expansion functions. and the coefficients—

see (1] for details. Unaer these requirements the umgue
solution for the dimension has the form

M—IN—
Di(g)=ex pm.‘llnpm’n )

! 8——'0—"-—""’—-—: . 3)
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The resuit is an entropy-denved measure for which
probabilites are deveioped from the coefficients {am ;.
by analogy 0 quantum mechanical methods. When a set
of sagnais | s;(2)} 1s considered. a set dimension can be
defined as a weighted average of individual dimensions:

D= u;D;. (4)

t
where the weights ( 4; | could represent probabilives. or
acould be assigned 10 reflect reiative imporance of the
vanous signals. This same dimension measure has been
proposed independenty by Coifman ez al. [3].

3. SOLUTION TECHNIQUE
Analytic minimizatuon of (4) is in general a bleak
prospect.  Even wriung the gradient of D with respect o
the window funcuon is difficuit. and the solution of
VD=0 is not apparent. We address the minimizanon as
follows: (1) since expansion coefficients are linearly
reiated to the biorthogonai function., we solve not for the
window funcuon w that minimizes 0. but its biorthogonai,
b—permutung the analytc gradient to be obtained—from
wiich w is found: (2) soiution for the opumum 5 is
accompiished by iterative methods of nonlinear
optimizauon theory, including both those that directly
seek the minimum of D and those that soive for a root of
the gradient of D. Derivative aiding can range from none
to anaiytically provided second derivatives (Hessian
marrix) (4). Routines from the MATLAB Opumization
Toolbox and NAG FORTRAN Library generated the
resuits.
The equarions resuiting from the above are

D _ _ dinD
:0SgsP-L.
®, o, =0:0sq Sl

To do the impiied differenuation of the { py,_, } requires a

relation between the expanmsion coefficients and the
biorthogonai function: this expression differs according to
the form of discrete Gabor expansion used. Incorporanon
of siope information in seeking the zero of the gradient is
achieved using the mixed second order partais
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4. EXAMPLES
Figure | snows convergence of the biorthogonal funcnon
(solid lines) from an miuai (0 a finat state when the signai
set consists of a single rectangular puise. The opumum
~biorthogonal funcuon. shown dashed in the ‘initial' panel.
is the same puise tn this case. Starung from a Gaussian
random vector as the imtal biorthogonal funcuon. the
aigorithm (a gradient-aided steepest descent method using
mixed polynomial interpoianon) {4] converges within

seven iterauons (0 the aimost exactly correct swate.
achieving 3 dimension of 1.00001. Expenments using
multipie signai sets and other aigonthms are reported in
the full paper.

Figures 2 and 3 illustrate the results of a simpie
expenment in which the signal set contains two signais. a
rectanguiar puise and a decaying exponenual. Since these
two have disunct enveiopes. n0 one wingow function can
represent both signals with umity dimension. Figure 2
shows the representation when the (nonopumum)
rectanguiar signali s empioyed as the window.
Coefficients for the exponenual signai are in the upper
frame and those for the puise signai in the iower trame in
both figures. As the figure shows. the Gabor
representation reguires 3 large and several smail
coefficients, vieiding a dimension of 2.969. The
coefficients for the puise signai. as expected. consist of
only a singie term at the ongin with a dimension of 1.0.
The average dimensron for this representanon is then
1.98.

The window found by optamizanon (shown in Fig. 3)
resembles a piecewise linear approximation t0 the
exponenual signal. and the biorthogonai correspondingly
resembies that or an exponenuai. Gabor coefficients for
the exponentiai signal consist of one large term at the
locazion corresponding to the starting pownt of the signal.
and several smail coefficients scanered about the
frequency-time piane. resuiting in dimension 1.007. The
coefficient map for the puise signai consists of two large
erms at the first two Gabor time points, and several small
coefficients. producing a dimension of 1.984. The
average dimension for this solution 1s .50, which is 25%
lower (better) than the soiunon of Fig. 2.

It shouid be noted that we have not shown that these
resuits represent a giobal minimurn for the dimension. It
is possible that a2 more sophisucated cost function wouid
produce an even jower dimension.

Other numerical expenments performed with vanous
signal sets aiso succeeded in finding opuma.
Convergence and stability of soiuuons were found to be
sensiuve functions of initializauon. signal characteristics
and opumizaton method. Convergence to both giobal
and local minima were observed. as well as to highly
unstable. asymptouacaily giobal minima.
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Figure 1. Convergence to the biorthogounal for a square puise signal.
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